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Abstract

One challenge to creating realistic cognitive models of memory
is the inability to account for the vast common sense knowledge
of human participants. Large computational knowledge bases
such as WordNet and DBpedia may offer a solution to this
problem, but may pose other challenges. This paper explores
some of these difficulties through a semantic network spreading
activation model of the Deese-Roediger-McDermott false mem-
ory task. In three experiments, we show that these knowledge
bases only capture a subset of human associations, while
irrelevant information introduces noise and makes efficient
modeling difficult. We conclude that the contents of these
knowledge bases must be augmented and, more importantly,
that the algorithms must be refined and optimized, before large
knowledge bases can be widely used for cognitive modeling.
Keywords: False Memory; Spreading Activation; Knowledge
Base.

Introduction
The modeling of human memory phenomena has a long
history, from equations describing the strength of individual
memory elements over time, to the embedded memory
subsystems in modern cognitive architectures. One limitation
of memory models, however, is their failure to account for
how experimental subjects do not come into the laboratory as
a blank slate, but with a large set of common-sense knowledge
and facts about the world, as well as associations built up
from individual experience. This background knowledge is
impossible to fully elicit from subjects and often omitted from
computational models. As a result, these models are over-
simplified and may fail to account for phenomena in which
the contents of memory play a role.

At the same time, the increasing number of artificially
intelligent agents that operate in knowledge-rich environments
has led to the development of large computational knowledge
bases. Knowledge bases such as WordNet (Miller, 1995)
and DBpedia (Bizer et al., 2009) endow artificial agents
with lexical and conceptual knowledge, allowing them to
perform human-like reasoning. These collections of semantic
knowledge, in a form that can be incorporated into the long-
term memory of cognitive architectures, present an opportunity
to build models that match real human memory in scope and
scale. Recent work has adapted DBpedia for factual question-
answering in the ACT-R architecture (Salvucci, 2015), a task
for which the knowledge base is well suited, as it mirrors the
use of DBpedia in artificial intelligence research. Whether
knowledge bases can be used to model cognitive phenomena
outside of reasoning and inference, however, remains an open
question.

In this paper, we explore some of the challenges that
researchers may face when incorporating large computational

knowledge bases into a cognitive model. Specifically, we
use WordNet and DBpedia to model the formation of false
memories through human associations in the Deese-Roediger-
McDermott (DRM) paradigm (Roediger & McDermott, 1995).
We selected the false memory task specifically because it
involves a broad range of knowledge that large knowledge
bases could provide, while requiring associations for which
WordNet and DBpedia may not be particularly well suited.
The partial success of our model suggests that while large
knowledge bases hold promise for general cognitive modeling,
they present representational and algorithmic challenges that
have yet to be overcome.

Background
The DRM task is a well-known procedure for inducing false
memory in humans. Participants are told they are part of a
memory experiment and presented with a list of fifteen stimuli
words at a moderate pace. After the presentation, participants
are occupied with a filler task, before being given two minutes
to recall as many words from the list as possible. Crucially,
the list of words are not random, but are all associated with a
lure, which itself does not appear on the list. For example,
for the lure “needle”, the list of words presented to the
participants includes “pin”, “sharp”, “prick”, “haystack”,

“thorn”, “cloth”. (All words in a DRM list will be in quotes and
italicized, with the lure words underlined; all other words will
be in quotes but unitalicized.) The result is that experiment
participants will recall the lure at roughly the same rate as
the stimuli words, and will further report that the lure was
presented – a false memory. After a break, another list built
around a different lure is presented, for 36 published false
memory word lists (Stadler, Roediger, & McDermott, 1999).
In the original study, participants recalled 62% of the stimuli
words, and falsely recalled the lure 55% of the time.

In a different publication (Roediger, McDermott, & Robin-
son, 1998), the authors suggested that this phenomenon could
be explained through a spreading activation mechanism. They
hypothesized that the semantic concepts represented by the
stimuli words are connected in a semantic network; nodes in
the network represent concepts, while edges between nodes
represent an association of some kind. Thus, every word on
a DRM list would be connected to the lure, possibly with
additional connections between stimuli words. Each word
would also have an activation value that represents its salience
at any particular time; the higher the activation, the more likely
that concept will be recalled at that time. When a stimuli
word is presented, it is hypothesized that not only is the
activation of that concept boosted, but so is the activation



of associated concepts, including the activation of the lure.
The presentation of multiple stimuli words would boost the
activation of the lure multiple times, causing its activation at
the end of the presentation phase to be indistinguishable from
the activation values of the stimuli words. Then, during the
recall phase, words with the highest activation are recalled.
Since participants could not determine whether the high
activation of a word is due to its presentation or due to
spreading activation (a source monitoring failure), they report
the lure as having been presented.

Although spreading activation is an intuitive and appealing
explanation for how false memories are induced in the DRM
paradigm, creating a cognitive model of the task requires
capturing human associations between words. The breadth
of the stimuli and lure words – which range from everyday
objects such as “window” and “pen” to relatively obscure
words such as “sash” (a type of window) and “Cross” (a pen
company) – makes the creation of a comprehensive model
challenging. Traditional word-association paradigms cannot
cover a sufficiently large range of words, even when converted
into a “game with a purpose” and crowd-sourced to players on
the internet (Hees, Khamis, Biedert, Abdennadher, & Dengel,
2013).

A previous model of the DRM task estimated word
associations from co-occurrence information in a text corpus,
using the latent semantic structure to “recall” words that
are semantically similar to the stimuli words (Johns &
Jones, 2009). As the authors themselves noted, these lexical-
semantics techniques only capture the structure of memory at
best, but do not shed light on the recall processes. While
the resulting model leads to good fits for the stimuli and
lure recall rates from the original study, the computational
linguistic techniques used were not designed to model recall
tasks, requiring a convoluted process for generating the lure.
Furthermore, these models cannot accommodate complex
reasoning with the encoded concepts, meaning that the
knowledge captured by these associations is unusable for
modeling human inference.

This paper instead directly tests the original hypothesized
spreading activation mechanism, using large computational
knowledge bases as the semantic network. The assumption
is that the organization of these knowledge bases naturally
encode association information, with more strongly associated
concepts represented by nodes separated by a shorter network
distance. Gleaning association information from computa-
tional knowledge bases would be a step towards the ideal
of a single source of semantic knowledge that can be broadly
used to model both human associations and inference.

Model Description
This section first describes the relevant components of the Soar
cognitive architecture, before describing the model built using
Soar.

Soar’s working memory contains knowledge that is avail-
able for immediate reasoning. Working memory is represented

as an edge-labeled directed graph, which is matched on and
modified by procedural rules. In addition to knowledge in
working memory, Soar has a long-term semantic memory,
which contains general knowledge about the world. Each piece
of knowledge (a node) in either memory is known as a memory
element, Knowledge in semantic memory must be retrieved
into working memory before it can be used. To do so, a Soar
agent must create a cue that describes features of the desired
piece of knowledge. Each element in semantic memory is
associated with a base-level activation value, which reflects the
recency and frequency of the retrieval of the element. The more
recently and frequently an element is retrieved, the higher its
activation value; however, the activation automatically decays
over time. When the agent creates a cue, semantic memory
returns the most-activated memory element that matches the
cue, and places it in working memory to be matched on by
procedural rules.

Spreading activation, as the hypothesized mechanism that
leads to false memories, operates on the knowledge in
semantic memory. Unfortunately, there is no standardized
spreading activation algorithm, nor is there consensus on
the meaning of spreading activation. In Soar, every retrieval
of a memory element not only boosts the activation of that
element, but also boosts the activation of neighboring elements
in semantic memory, hence “spreading” the activation (Li &
Laird, 2015). The number of elements that receive a boost is
implicitly defined by a maximum spreading depth parameter,
with a spreading depth of zero meaning that only the retrieved
element receives a boost. All neighboring elements (regardless
of edge direction) receive the same boost – the effect is
not attenuated by distance, nor are there differential effects
due to the strength of the connection between elements. In
fact, the boost due to spreading is indistinguishable from the
boost received by the element retrieved; both changes are to
the base-level activations of the elements and will therefore
affect future retrievals. This is notably different from the
spreading activation in ACT-R, which comes from elements in
working memory, is considered separately from the base-level
activation of memory elements, and only affects the current
retrieval. Since the sources of activation (the stimuli words)
are not present (not in working memory) at the time of recall
in the DRM task, our model uses Soar’s spreading activation
mechanism in order to take advantage of its temporal extent.

Agent Description
A Soar agent plays the role of an experimental participate in
our model. Before a list is presented, the agent’s semantic
memory is pre-loaded with the knowledge base for the
experiment. The base-level activation of each element is
uniform and is not initialized, as there is no consistent method
of doing so for all three database. Once the database is loaded,
the agent is sequentially presented with the stimuli words
as strings. The agent must then retrieve the element that
represents the associated concept from semantic memory,
causing activation to spread to neighboring elements. Only
after this retrieval is the next stimuli word presented, at which



point the agent removes all previous elements from working
memory. After all fifteen words from a list have been presented,
the agent enters the recall phase. It retrieves the fifteen most
activated words (without repetition) from semantic memory,
from which the recall statistics are calculated. The semantic
memory of the agent, including the activation of the elements,
is then reset for the presentation of the next list.

We note two caveats to this agent. First, the base-level
activation of each element in the knowledge base is not
initialized. Selecting the initial activation is a non-trivial
problem. Using the number of connections from each element
(Salvucci, 2015) means that activation levels are not consistent
between knowledge bases, while using frequency information
from a text corpus (Johns & Jones, 2009) may require
manually mapping concepts to all their synonyms. For this
paper, we do not believe the lack of initialization is the main
cause of model error; as we explain in the general discussion,
the difficulties do not come from differences in retrieval order,
but from whether the correct elements and connections exist
in the knowledge base at all We acknowledge, however, that
initializing activation is an important part of memory models
not captured here, and more exploration into robust algorithms
for consistently initialization activation across knowledge
bases may be necessary.

The second caveat to our agent is the design of the recall
phase. In the human experiments, the participants were given 2
to 2.5 minutes to recall as many words as possible. In contrast,
the agent in this model only retrieves the first 15 words,
equivalent to a retrieval every eight seconds – a slow but not
unreasonable rate. Using ACT-R’s simulated retrieval times to
approximate the procedural constraints would likely lead to the
opposite problem of too many recalled words, since retrievals
take less than a second by default (even with additional time for
rule firings). Additional memory mechanisms – perhaps rules
for determining whether a retrieved word should be reported
as a stimuli – may be needed to model the DRM task with
higher fidelity.

Metrics
We are interested in two key metrics that were used in the
original false memory study:

• The stimuli recall rate, which is the proportion of stimuli
words recalled after the presentation of a list, averaged over
all 36 lists. The original study reports a stimuli recall rate
of 62%, meaning that on average participants recalled 62%
of the fifteen words in a list.

• The lure recall rate, which is the proportion of the 36 lists in
which the lure was (falsely) recalled. Note that this metric is
about a proportion of lists, and not about a proportion of the
stimuli words in a list, and thus has no direct relationship
to the stimuli recall rate. The original study reports a lure
recall rate of 55%, meaning that on average participants had
a false memory of the lure on 55% of the lists.

Before we describe the three experiments with different

knowledge bases and their results, we reiterate that the goal of
this work is not necessarily to perfectly model the stimuli and
lure recall rates. We are not looking for the exact depth limit to
spreading activation that should be used in future false memory
models. Rather, the experiments below should be seen as an
exploration of some of the challenges that cognitive modelers
may face when attempting to leverage large knowledge bases,
especially on tasks for which the knowledge bases are not
designed. Towards this goal, while the metrics above provide
a rough sense of the goodness of fit, the discussion for each
experiment is more focused on properties of the knowledge
base that led to those results.

Experiment 1: Hand-crafted Network
The goal of this experiment is to validate spreading activation
as a viable explanation for false memory in the DRM task.
The semantic network used in this experiment was created
manually from the words in the “needle” and “doctor” lists.
For each list, the fifteen stimuli words are all connected
to the lure, with additional connections created based on
whether the words are intuitively and informally associated.
For example, “pin”, “thimble”, and “prick” are all connected,
while none of the three are connected to “haystack”. Finally,
four connections were added between the stimuli words of
the two lists, such as “injection” (from the “needle” list) and

“medicine” (from the “doctor” list) and “hurt” and “sick”, for
a total of 109 edges between 32 nodes. It is important to note
that the resulting network is representative of how semantic
networks are depicted in non-computational literature.

Only the “needle” and “doctor” lists were presented using
this network, with an activation decay rate of 0.5 and a
spreading depth limit of 1. The results for both lists are
similar. The lure is the first word to be retrieved (as it has the
highest activation), with the stimuli words for the list retrieved
afterwards. As would be expected, since activation spreads
only to the immediate neighbors of the stimuli words, the four
words that bridge the two lists are also activated, but not the
lure of the not-presented list

Although only two lists are used for this experiment, there
is no reason to believe that the results would not generalize
to similar hand-crafted semantic networks for the other lists.
The quantitative results cannot be meaningfully compared to
the stimuli and lure recall rates of the original study; however,
the qualitative results are in line with the description that the
lure is more highly activated than some stimuli words. While
there is a tendency for words towards the end of a list to
be retrieved first – as would be consistent with the decay of
activation over time – the actual order of words retrieved is
also affected by the structure of the semantic network due
to spreading activation. Since the retrieval order would once
again be different if the activation was initialized with other
information, the rest of this paper does not consider the order
in which words are retrieved. Regardless, this experiment
suggests that spreading activation on a naive semantic network
could cause the retrieval of the lure, which in this model



indicates the formation of a false memory.

Experiment 2: WordNet
WordNet (Miller, 1995) is a database containing lexical
knowledge, and is widely used both independently (for tasks
such as parsing and word sense disambiguation) as well as
in conjunction with other knowledge bases and ontologies.
Nodes in WordNet represent not only words and phrases (for
example, “sewing needle”), but also additional information
about the meaning of those words, including word meanings
(senses), synonym sets (synsets), antonyms, and certain types
of entailments (for example, buying entails paying, so “buy”
is connected to “pay”). WordNet nodes that represent words
can be identified by an outgoing edge labeled string, which
links to a string representation of the word; these edges do
not exist for other concepts (such as synsets). The version of
WordNet imported into Soar’s semantic memory contains over
474,000 nodes and 1.7 million edges.

The Soar agent used in this experiment is roughly the same
as the one used in the first experiment. The only difference is
in the recall phase, when the agent restricts the retrievals to
words by specifying the string edge in the cue. All words
from the DRM lists are used as is, with the exception of “Bic”
and “Cross” from the “pen” list. These pen companies do not
exist in WordNet and were excluded from the experiment; the

“pen” list therefore only contains thirteen stimuli words.
For this experiment, separate trials were run for different

spreading depths (1 through 6) and different decay rates (0.25,
0.5, 0.75, 0.9).

Results
The overall results are shown in Figure 1. For each parameter
setting, we plot both the stimuli recall rate and the lure recall
rate, as well as average proportion of recalled words (out of
15) that are neither stimuli words nor the lure (which we shall
call external words). The human data from the original DRM
study is shown for comparison; the results for depths 1 and 2
are left out for reasons explained below. Across all parameter
settings shown, the stimuli recall rate ranges from 9% to 41%,
well below the reported rate of 62% in humans, while the lure
recall rate ranges from 0% to 72%, compared to the reported
rate of 55% in humans. In particular, using the ACT-R and
Soar default decay rate of 0.5, a spreading depth of 5 results
in a lure recall rate of 56%. In general, however, no parameter
setting accurately matches human data on both stimuli and
lure recall rates.

For spreading depths of 1 and 2, the stimuli words were
consistently retrieved, while the lure was never retrieved. Upon
examination, this is because WordNet is structured with most
words only being connected through word senses and synsets.
The node representing “thorn”, for example, is connected to
three word senses, each of which is connected to a synset –
which means that, within a network distance of two, “thorn”
is not connected to any words at all, never mind the lure

“needle”. Since the retrieval cue used by the agent limits results
to words, the retrieval fails after the stimuli words are retrieved.

This explains both the high stimuli recall rate and why the lure
is never retrieved.

The data shows additional trends regarding the stimuli
and lure recall rates. In general, the spreading depth is
proportional to the lure recall rate but inversely proportional to
the stimuli recall rate. That is, the stimuli recall rate decreases
as spreading activation extends deeper from the stimuli word,
while the lure recall rate increases from the same manipulation.

These results can be explained by the same WordNet
structure mentioned previously. When spreading activation
is limited to nearby nodes, only a small number of words
(as opposed to word senses, synsets, etc.) are boosted, hence
the majority of words retrieved are the stimuli. When the
depth limit is increased, however, spreading activation now
reaches other words in the synsets. These words – which may
include the lure – may in fact receive activation boosts spread
from multiple stimuli words. The word “shot” falls into this
category, as it means both “injection” and “hurt” (as in a solid
shot to the chin). Other external words may simply be boosted
by stimuli words later in the list, and therefore have higher
activation during the recall phase than stimuli words earlier in
the list. Together, this leads to a decrease in the stimuli recall
rate as well as an increase in the lure recall rate.

Discussion
Although the lure recall rate from WordNet spans a range
that includes the human lure recall rate of 55%, the structure
and content of WordNet does not directly match human
associations. The nodes representing the stimuli words in
WordNet are not structured such that activation will spread to
the lure. We discuss two categories of such failure here: cases
where additional edges lead to model errors, and cases where
edges are missing.

First, as we noted, WordNet is structured with individual
words arranged in “spokes” around lexical constructs such as
synsets. While synsets do represent some of the relationships
between stimuli words and the lure – as in “syringe” and

“needle” – they are not the only relationships around which
words are organized. Since WordNet is a dictionary in
knowledge base form, it also contains information about
the derived form of words, such as the relationship between

“inject” and the words “injectable”, “injecting”, “injection”,
and “injector”. With the exception of “sit” and “sitting” in
the “chair” list, derived words do not appear in the DRM
lists, and more importantly, are unlikely to be produced
during human recall. This mismatch may be due to the
lexical relationships encoded in WordNet, as opposed to
the conceptual relationships on which spreading activation
is hypothesized to occur. Human participants would only
produce one word for each concept, but spreading activation
(at least over WordNet) leads to the retrieval of multiple
derived words. Algorithmic changes may be necessary before
spreading activation can correctly model the generation of
false memory; we propose one such change in the general
discussion.

Although WordNet contains connections that extend beyond
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Figure 1: Results from using WordNet as the knowledge base.

human associations, it fails to capture other relationships that
the DRM lists exploit. A careful examination of the word
lists reveals that they contain multiple types of associations.
Some, such as antonyms (“high” and “low”), are encoded
in WordNet despite being more conceptual. Others, however,
are not captured despite being lexical in nature. For example,
the “high” list contains the word “noon”, clearly intending to
invoke the phrase “high noon”. Crucially, while “high noon”
does exist as a phrase in WordNet, it is not connected to its
component words “high” and “noon”. At the same time, other
idiomatic phrases, such as “needle in a haystack” and “making
a mountain out of a molehill”, are not represented in WordNet.
Also missing are cultural references; the inclusion of “tiger”
and “bear” in the “lion” list appears peculiar, but may be
explained by the lyric lions and tigers and bears, oh my! from
The Wizard of Oz. Unlike the first type of failure due to an over-
abundance of connections, there is no algorithmic solution to
missing data, at least not without expanding the database using
a text corpus, which presents challenges of its own.

Mismatched and missing data is not unexpected in large
knowledge bases, although in this case some of them seem
to arise from WordNet’s specialization in lexical knowledge.
Our third experiment looks at whether a different knowledge
base may lead to a better model of human associations in false
memory.

Experiment 3: DBpedia
DBpedia (Bizer et al., 2009) is a knowledge base created using
information from the online encyclopedia Wikipedia. The
nodes in DBpedia represent articles on Wikipedia (or more
accurately, they represent the concepts that the Wikipedia
articles describe), while the edges come from the categories
to which the articles belong, as well as the infoboxes that
provide basic information. As a result, the type and amount of
information varies between concepts. The version of DBpedia
used in this experiment contains 6 million nodes and 27 million
edges.

The size and scope of DBpedia led to two differences in this
experiment from the previous ones. First, since DBpedia does

not contain a comprehensive dictionary of English words, and
not all words in the DRM lists have their own Wikipedia article,
the stimuli words can no longer be presented as strings. Instead,
we manually mapped each word to a concept in DBpedia,
mostly following the redirections on Wikipedia. This led to
some words being mapped onto the same concept (“waste”
and “refuse” both mapped onto “waste”), while others mapped
onto concepts that are overly specific (“garbage” mapped
onto “municipal solid waste”). More problematic were words
that differed in meaning from their Wikipedia articles. Words
from the “thief” list are good examples: Wikipedia does not
contain articles for “thief”, “robber”, “burglar”, “bandit”, or

“criminal”, only articles for “thievery”, “robbery”, “burglary”,
“banditry”, and “crime”. These words were excluded from this
experiment.

To accommodate the size of DBpedia, a custom Python
script that simulated spreading activation was used instead
of Soar, although the same algorithm as Soar’s semantic
memory is followed. For this experiment, the fifteen “retrieved”
concepts are simply the fifteen most-activated nodes. The
size of DBpedia and the density of its connections remains
daunting; as an example, a fifth of the nodes in DBpedia
are only two connections away from the nodes selected for
the “army” list. This makes spreading beyond a depth of 2
untenable. As a result of these two problems, only about half
the lists (seventeen) were used in this experiment, with an
average of 14.1 concepts.

Results
Due to the reduced dataset, the results in this section should
be treated with some skepticism; however, we believe they are
nonetheless representative of using DBpedia to model false
memory and human associations.

For spreading depth 1 at the default decay rate of 0.5,
spreading activation on DBpedia resulted in stimuli and lure
recall rates of 15% and 0% respectively; for spreading depth
2, the stimuli recall rate decreases to 3%, while the lure recall
rate increases to 12%. These numbers follow the trends found
from the WordNet experiment. To understand the low lure



recall rate, we found it instructive to look at the “shirt” list,
one of two lists for which the lure was consistently retrieved.
Unlike other DRM lists, the “shirt” list is unique in that the
vast majority of items belong to the same category. This shared
classification means that the lure is only a network distance of
two away from the stimuli words, and is therefore sufficiently
boosted in activation for it to be retrieved. In contrast, the
stimuli words for other DRM lists do not conform as neatly to
the taxonomic structure of DBpedia – the lure is not as directly
connected to the stimuli, causing the lure to not be retrieved.

That the lure is not retrieved, however, does not mean that
the stimuli words are retrieved; the highly connected network
structure also led to the low stimuli recall rate. Page links on
the internet are known to have a small-world structure, where
the pairwise distance between all nodes are small and where
there are many nodes with large degrees. For example, “anger”
is connected to “red”, which in turn is connected to over 600
concepts, mostly organizations whose representational colors
include red. Because these “hub” nodes are often connected to
multiple stimuli words, their activation is boosted above that
of the stimuli words and are retrieved instead, resulting in a
low stimuli recall rate.

Discussion
The failures in both WordNet and DBpedia are representa-
tional; we discuss these issues in the next section. For DBpedia
alone, we faced the additional difficulty of mapping the stimuli
and lure words to a concept. One concern not yet raised is
that the choice of concepts used to represent nodes requires
association and reasoning on the part of the modeler. A number
of words in the DRM lists are polysemous; “prick” and “hurt”,
for example, would fit just as well as “goad” and “heckle” into
a different “needle” list (as a verb instead of as a noun). If
DBpedia is to be used for modeling associations and false
memory, a better protocol would be for unknowing coders
to determine which concepts correspond to the lure and the
stimuli words. This would remove confirmation bias that may
be inherent in how words are currently mapped to concepts.

General Discussion
This paper attempted to use large computational knowledge
bases to model the human associations that lead to false
memory in the DRM paradigm. Our model was able to
qualitatively recreate the DRM false memory phenomenon, but
only on a hand-crafted semantic network that resembles their
traditional depiction. When large computational knowledge
bases such as WordNet and DBpedia are used, however, the
naive spreading activation algorithm fails to simultaneously
match the stimuli and lure recall rates. We believe that
these results are indicative of three general problems with
using large knowledge bases in cognitive modeling: missing
data from the knowledge base, missing connections between
existing data, and finally, the sheer amount of existing data.

Of the three, the missing data problem is the hardest to
solve. The type of common sense knowledge required to make
associations in the DRM task is neither lexical nor conceptual

– it exists neither in a dictionary nor in an encyclopedia.
One example of such knowledge is the fact that “rubber” is

“elastic”, “springy”, “flexible”, and “resilient”. It is infeasible
to manually encode all descriptions for all objects, and it may
be necessary to employ techniques from information retrieval
and natural language processing to extract this knowledge
from text.

Even for concepts/words that exist in the knowledge base,
neither WordNet nor DBpedia fully capture the relationships
between their nodes. Some of these missing relationships,
such as phrases from popular culture, can only be obtained
through similar means as the missing concepts/words; others,
by systematically adding edges to these knowledge bases,
such as connecting phrases to their component words. Perhaps
more relevant for cognitive modelers, however, is that there
is no consensus on the cognitive plausibility of the content
and structure of knowledge bases. In understanding the
experimental results of this paper, we have tried to determine
how the stimuli words relate to the lure, and whether these
relationships generally apply to other concepts. A complete
catalog of human associations would more clearly indicate the
types of connections that knowledge bases currently lack.

The final problem of the scale of the data is only made
worse by the addition of missing knowledge. The solution
here may be more algorithmic in nature, by modifying the
spreading activation algorithm such that it remains valid
as the size of the knowledge base grows. One possibility
is for spreading to occur only on particular edges, perhaps
informed by the context of the retrieval. This is similar to
using theory to extract a smaller, more specialized network
on which the network distance may be more meaningful
(Tenenbaum, Griffiths, & Kemp, 2006). Such an algorithm
would reduce the computational requirements of spreading
activation, while simultaneously filtering out connections that
are irrelevant for fitting human data. The same mechanism may
also allow lexical, conceptual, and other knowledge to exist in
the same knowledge base, as a unified semantic memory to be
used in cognitive modeling, without leading to the confusions
demonstrated in the results of this paper.

With more refined algorithms that can efficiently operate
on millions of concepts and relations, large computational
knowledge bases can become a valuable resource for modeling
the wealth of background knowledge that participants bring
into experiments.
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