
Preemptive Strategies for Overcoming the Forgetting of Goals

Justin Li and John Laird
University of Michigan
2260 Hayward Street

Ann Arbor, MI 48109-2121
{justinnh, laird}@umich.edu

Abstract

Maintaining and pursuing multiple goals over varying
time scales is an important ability for artificial agents
in many cognitive architectures. Goals that remain
suspended for long periods, however, are prone to be
forgotten. This paper presents a class of preemptive
strategies that allow agents to selectively retain goals
in memory and to recover forgotten goals. Preemptive
strategies work by retrieving and rehearsing goals at
triggers, which are either periodic or are predictive of
the opportunity to act. Since cognitive architectures
contain common hierarchies of memory systems and
share similar forgetting mechanisms, these strategies
work across multiple architectures. We evaluate their
effectiveness in a simulated mobile robot controlled by
Soar, and demonstrate how preemptive strategies can be
adapted to different environments and agents.

Introduction
Although it is traditionally considered undesirable for agents
to lose any information, the process of forgetting has recently
attracted positive attention in the fields of both psychology
and cognitive architecture. The rational analysis of memory
suggests that the retention of knowledge should be predictive
of the knowledge’s usefulness (Anderson 1990). Forgetting
is therefore critical to discarding unnecessary information.
Indeed, forgetting plays a key role in reflecting the experience
of the agent in heuristic judgments such as recognition
and retrieval fluency (Schooler and Hertwig 2005). In
artificial agents, forgetting is also a solution to the utility
problem, where increased amounts of knowledge causes
agent performance degradation due to search costs (Minton
1995). By selectively forgetting information, less resources
are spent searching through irrelevant knowledge, thereby
keeping memory and computational needs within manageable
bounds (Derbinsky and Laird 2012).

With the acceptance of forgetting, however, there must
also be strategies to prevent essential knowledge from being
forgotten. One important type of knowledge is the goals
that the agent has yet to accomplish. This is particularly
problematic when the agent cannot immediately act on the
goal: if the goal is forgotten, the agent does not simply fail

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to recognize an opportunity to act, but it fails to realize that
it needs to act in the first place. For someone tasked with
bringing milk home, this is the difference between failing
to recognize that a nearby convenience store sells milk, and
not realizing that milk must be bought. The challenge of
prospective memory is to ensure that the goal is not forgotten
when the opportunity to act arises.

The problem of prospective memory has been relatively
ignored. Earlier work on opportunistic planning tackles a
similar problem of resuming suspended goals (Simina and
Kolodner 1995), although forgetting is not a focus and
research in that field tends to treat goals as special structures.
More recent work using cognitive architectures does not
make such assumptions, and integrates a theory of forgetting,
where knowledge can be removed from short-term memory
while remaining available in the more stable long-term
memory (Altmann and Trafton 2002). ACT-R (Anderson
2007) has been used to model the Intention Superiority Effect,
a phenomenon where unfulfilled goals are easier to recall than
fulfilled goals (Lebiere and Lee 2002). The architecture has
also been used to model human reaction time data (Elio 2006),
although neither of these models was tested in an agent in a
complex domain. The closest precursor to this work describes
how an agent might suspend and resume goals in the Tower
of Hanoi puzzle (Altmann and Trafton 2002). Before the
agent attempts a subgoal, it ensures that the original goal will
only be partially forgotten; this allows the agent to recover
the goal after the subgoal is completed. The retention of goals
in the Tower of Hanoi is simplified, however, as the retention
length is known through means-ends analysis. The agent’s
pre-programmed knowledge of the duration of a subgoal
allows it to manipulate memory to facilitate later recall; this
is rarely possible in less well-structured problems. Strategies
for prospective memory have therefore remained untested in
complex domains.

We strive to fill this gap in this paper. We present a class
of preemptive strategies that identify key moments when the
memories of goals need to be maintained, and provide two
ways to overcome the forgetting of goals. This class subsumes
previous work, and can take advantage of domain- and task-
dependent features to improve performance. A sample of
computational approaches within this class of strategies
are implemented in the Soar cognitive architecture (Laird
2012) and evaluated in a simulated mobile robot. Within this

domain, we demonstrate that increasing the rate of forgetting
or slowing down the temporal dynamics makes prospective
memory more challenging, but that preemptive strategies can
adapt to these changes.

Forgetting and Memory Hierarchies
The goal of cognitive architecture research is to discover
the fundamental computational structures and processes
that underlie intelligent behavior. This paper focuses on
two architectures, ACT-R and Soar, as they are fully
implemented, widely used, and share similarities in design.
Both architectures create behavior through the matching of if-
then rules: the conditions test knowledge in memory, which
the actions transform or remove. More crucially, the two
architectures incorporate short-term and long-term memories.
These memories form a hierarchy, with the levels arranged
by the stability, the influence on behavior, and the amount of
knowledge contained. The memory elements stored in this
hierarchy represent different kinds of knowledge, including
the pending goals of the agent; it is the forgetting of these
goals that give rise to the challenges of prospective memory.

At the top of the hierarchy is short-term or working
memory. This memory contains the immediate perceptions
of the agent, as well as knowledge that is relevant to the
current situation. The knowledge in short-term memory
directly determines the behavior of the agent, as it is the
only knowledge against which rules are matched. Since the
size of short-term memory is a major factor in the cost
of rule-matching (Forgy 1979), it is usually kept small; an
architectural limit may be placed on its size (as in ACT-R),
or an architectural process may remove memory elements
over time (as in Soar). Both of these mechanisms can be
considered “forgetting”, as potentially useful knowledge is
lost.

At the next level of the memory hierarchy is one or
more long-term memories. This level of the hierarchy
contains knowledge that may be useful to the agent over
its lifetime, but not necessarily at the present; examples
include facts about the domain and the previous experiences
of the agent. Due to its potential size, rules do not match
against knowledge in long-term memory. Instead, long-term
knowledge is accessed through deliberate cued-retrievals,
where the results are deposited in specialized buffers in
working memory. Although knowledge in long-term memory
does not directly impact rule-matching costs, it may still
be forgotten; whether a particular memory element is lost
is often a function of the agent’s previous access to that
knowledge.

The last level in the “memory” hierarchy is the environ-
ment, which we include for completeness. It is considered
a level in the hierarchy because knowledge that is lost from
long-term memory may be recoverable from the environment.
Since the environment is external to the agent, access to
knowledge is extremely slow as compared to other memories.
In this work, we do not consider how the agent can obtain
knowledge from the environment to combat forgetting.

Although other architectures may not fully implement this
memory hierarchy, a small subset of abilities is sufficient for
the rest of this paper to apply. In particular, the architecture

activation = ln(

n∑
i=1

ti
−d)

Figure 1: The equation for base-level activation. n is the
number of activation boosts, ti is the time since the ith boost
occurred, and d is a free decay-rate parameter.

must have a working memory of limited size (eg. CHREST,
Polyscheme) or that is subject to forgetting (eg. CLARION,
LIDA), and must support directed memory retrievals (all of
the above) (Gobet and Lane 2010; Cassimatis et al. 2010;
Sun 2006; Snaider, McCall, and Franklin 2011). These two
capabilities are sufficient to implement some of the strategies
in this work, and many of the effects apply. The rest of this
paper focuses solely on ACT-R and Soar.

Forgetting in ACT-R and Soar
We now describe how ACT-R and Soar implement this
memory hierarchy, and how forgetting affects the knowledge
in each architecture.

In ACT-R, knowledge is represented as chunks. Chunks are
stored and processed by modules, which perform specialized
operations such as perception, motor actions, and memory
access. These modules are only accessible through their
buffers, each of which contains at most one chunk. The
buffers of all the modules together act as ACT-R’s working
memory, and they contain the only knowledge that rules can
match against and directly modify. Since the size and the
number of buffers is fixed, ACT-R’s working memory has
limited capacity; in order to access a module, the current
contents of its buffer must be replaced. To overcome this
extremely rapid forgetting of information from working
memory, all chunks that have existed in various buffers
are automatically stored into the declarative memory (DM)
module. This module acts as ACT-R’s long-term memory,
allowing knowledge no longer available in working memory
to be recovered. To retrieve knowledge from declarative
memory, the agent must query DM with a partial description
of the desired knowledge; knowledge that best matches
the description will be recreated in the buffer. A chunk in
declarative memory may also be forgotten, based on its base-
level activation, which summarizes its access history (Figure
1). Activation decreases exponentially over time, a process
called decay, but is increased (boosted) whenever the chunk
appears in a buffer, either due to retrieval or due to perception
from the environment. If the activation of a chunk falls below
a threshold, the chunk becomes unretrievable, and can only
be boosted again through perception. Forgetting in ACT-R
therefore occurs on two levels: knowledge may be lost in
working memory due to replacement by other knowledge,
and knowledge may be lost in declarative memory due to
infrequent access.

In Soar, working memory is a graph structure with special
locations for perception and motor control, as well as for
accessing the long-term memories. Episodic memory stores
the previous experiences of the agent, while semantic memory
stores knowledge and facts about the world. We focus on

semantic memory in this paper, due to its similarity with ACT-
R’s declarative memory. As with its ACT-R counterpart, the
agent can only access semantic memory through description
queries, again with the memory element that best matches the
description being returned. Only knowledge that originates
from long-term memory is subject to forgetting from working
memory, as it is guaranteed to be recoverable. This forgetting
is also based on base-level activation, where activation is
boosted by retrievals from semantic memory and by the
matching of rules. Within semantic memory, knowledge
experiences no dynamics, and will not be forgotten. There
is therefore only one type of forgetting in Soar: the loss of
knowledge from working memory, where it is guaranteed to
be recoverable from semantic memory.

From these descriptions, it is clear that the memory
systems of ACT-R and Soar share many similarities. Both
architectures allow agents to boost the activation of a memory
element to length the time until it is forgotten; this may
intuitively be called rehearsing. Alternately, if knowledge
is lost from working memory, it can be retrieved from long-
term memory, allowing the agent to recover from forgetting.
These two observations form the basic building blocks to
overcoming forgetting.

A final observation is that both architectures treat sus-
pended goals no differently from other memory elements,
and are therefore subject to forgetting. Aside from being con-
sistent with psychological theories (Anderson and Douglass
2001), the forgetting of goals also offer functional benefits. In
ACT-R, the limited size of working memory does not leave
space for non-active goals; in Soar, the goals are forgotten to
avoid increased rule-matching costs due to a large working
memory. Thus far, ACT-R and Soar agents have mostly
dealt with domains with hierarchical goals, where problem
solving determines the next goal to achieve. In less-structured
domains, more elaborate strategies are required as suspended
goals are removed from working memory.

Preemptive Strategies
The management of suspended goals is called prospective
memory. Previous work has identified five stages of this
process (Ellis 1996):

encoding The goal is stored into the long-term memory of
the agent

retention The agent waits for an opportunity to act on the
goal.

initiation An opportunity arises, and the agent must recog-
nize that the goal is applicable

performance The agent acts to complete the goal.

completion The goal is marked as completed, such that the
agent will not continue to pursue the goal.

The problem of forgetting most severely effects the
initiation stage of prospective memory, which is the sole
focus on this work.

In order for the agent to recognize that a goal is applicable
during the initiation stage, the goal must be in working mem-
ory such that rules can identify the opportunity. If the goal is

forgotten during the retention interval, it must be deliberately
retrieved from long-term memory — except that for the agent
to have initiated a retrieval, it must have recognized that
the goal is applicable in the first place. This chicken-and-egg
problem is solved by humans in multiple ways (McDaniel and
Einstein 2000). For example, the goal may be retrieved from
long-term memory spontaneously, without deliberate effort
by the agent; this may occur because the goal is somehow
associated with the agent’s perceptions or reasoning. Another
solution involves metamemory judgments, which signal to the
agent that something of significance has just been perceived.
The agent may then decide to search its memory for the
source of this significance, and find that an opportunity to act
on a goal has arisen. Both these solutions, however, may
require additional memories and mechanisms than those
discussed; metamemory judgments, in particular, remain
largely unexplored in cognitive architectures (Li, Derbinsky,
and Laird 2012). Modifying the architecture to enable these
strategies has impact beyond the forgetting of goals; we leave
the exploration of these strategies for future work.

Instead, we take inspiration from a third strategy that
humans use, and which can be implemented without ar-
chitectural changes. There is psychological evidence that
people tend to recall goals when switching between task
contexts, such as when walking down a hallway to a meeting
(Sellen et al. 1997). If a goal is retrieved and an opportunity
to act is judged to be imminent, it is kept in mind and
monitored — that is, attentional and memory resources are
set aside to continually checked for opportunities to fulfill
the goal (Harris 1984). A slight variation of this strategy
is to regularly retrieve and check the goal within a time
period. Both strategies can be adapted for artificial agents;
by temporally dissociating the retrieval of the goal from the
opportunity to act, one of the dependence links of the causal
loop is removed.

The two variations above share a common framework: that
of using a goal-independent trigger — such as a periodic
interval or a context switch — to manage the problem of
forgetting goals. Since this class of strategies attempts to
ensure that the goal is in working memory prior to the
opportunity to act, we call these preemptive strategies for
prospective memory. In addition to the type of trigger, this
class of strategies can be further divided by the method used
to retain a goal in memory. A proactive approach attempts to
prevent goals from being forgotten by rehearsing each goal
to boost its activation. Together with a domain-dependent
trigger of subgoaling, this is the strategy used in the Tower of
Hanoi work (Altmann and Trafton 2002). On the other hand,
a reactive approach retrieves goals back into memory after
forgetting has taken place. These approaches are not mutually
exclusive; an agent could first retrieve goals that have been
forgotten, then proceed to rehearse them to further boost their
activation. Categorizing strategies by this distinction aligns
them with the capabilities of the memory systems of cognitive
architectures. A proactive approach applies to ACT-R’s long-
term memory and Soar’s working memory, where base-level
activation allows boosting. A reactive approach, only the
other hand, only applies to the working memories of both
architectures, where forgotten knowledge can be recovered

from long-term memory.
To make this concrete, an agent using preemptive strategies

has a goal-independent rule which encodes the trigger as
a condition. When the rule matches, the agent performs
either proactive or reactive maintenance on its goals. In
the proactive case, the agent boosts the activation of any
uncompleted goal; in the reactive case, the agent retrieves
any uncompleted goal from long-term memory. In both cases,
the agent then completes any matching goals in working
memory. The remaining, uncompleted goals then decay, and
are potentially forgotten, until the trigger is next encountered.

A preliminary assessment of preemptive strategies sug-
gests a remaining difficulty: that of scaling to large num-
bers of goals. In the psychological account of preemptive
strategies, which goal to retrieve or rehearse depends on
how soon the agent judges it to be relevant (Sellen et al.
1997). This, however, would require the agent to predict its
future perceptions — a capability not well studied in either
ACT-R or Soar. To sidestep this issue, in this work the agent
retrieves all of its unfulfilled goals at the specified trigger.
This temporary solution will fail with sufficiently many goals,
as the first goal to be retrieved could already have been
forgotten by the time the last goal is retrieved. Although this is
not, strictly speaking, a limitation of preemptive strategies, it
does constitute a restriction on the generality of this approach.
The severity of this restriction is part of our evaluation of
preemptive strategies below.

Empirical Evaluation
We ask three questions of preemptive strategies:

scaling Under the current approach of retrieving all de-
liveries at the trigger, what is the maximum number of
deliveries?

rehearsal performance How do rehearsal strategies per-
form under different conditions?

retrieval performance How do retrieval strategies perform
under different conditions?

To keep this evaluation broadly applicable, only strategies
with a single trigger and a single action (either retrieval or
rehearsal) are used.

We implemented the preemptive strategies in a Soar agent
that controls a simulated SuperDroid robot in an indoor
environment (Figure 2), which is divided into rooms. A room
is a rectangular area that the agent can traverse; irregularly
shaped areas, such as the one at the top of Figure 2, are
divided into multiple rooms. Some rooms are separated by
doorways, which constrict the agent’s path. Scattered around
the environment are objects of different colors, shapes, and
sizes; these can be picked up and put down by the agent. The
agent can carry multiple objects simultaneously, but can only
perceive the objects within its field of view in the current
room.

The goal of the agent is to pick up and deliver objects
to other rooms, while being constrained to a predefined
“patrol” route (ie. it must visit the room in a particular order).
A particular instantiation of this task includes randomly
generated object descriptions and locations, as well as the

Figure 2: A visualization of the simulated robot domain.
Objects, represented as dots, are scattered around the envi-
ronment. The line traces the robot as it performs deliveries.

deliveries that the agent must make. A delivery is determined
by the description of the object and the room to which the
object should be delivered; in particular, the agent does not
know the location of objects to be picked up. Before a run,
the deliveries are pre-loaded into the long-term memory of
the agent, and must be retrieved into working-memory. Since
the deliveries originate from Soar’s long-term memory, they
are subject to decay while in working memory and can be
forgotten. In order to make a successful delivery, the agent
must recognize that an object in the room needs to be picked
up, or that the current room is the destination for a delivery.
Although only one goal type is used in this evaluation, the
strategies can be trivially generalized to manage multiple
goal types. This task allows the preemptive strategies to be
tested on a complex domain.

The preemptive strategy triggers must be adapted to the
robot environment. The timing trigger uses motor commands
as the unit of time; an interval of 400, for example, means
that the memory action is taken every 400 steps or turns of
the agent. For the domain-dependent trigger, psychology and
prior work suggests that context-switches would be good cues
for the retrieval and rehearsal of goals. Since the agent can
only perceive objects within its current room, we use the entry
into a room as the trigger. Note that for this task, it is also
possible to use the perception of objects as a trigger, both for
retrieval/rehearsal and for searching for relevant deliveries.
There are, however, two disadvantages to this trigger. First,
although the trigger signals the agent that an object must be
picked up, it does not signal when an object should be put
down at its destination. Second, the description of an object
for delivery may not be complete — a delivery may only
specify the color of an object, allowing objects of any shape
to fulfill the requirement. Since neither ACT-R’s declarative
memory nor Soar’s semantic memory fully supports partial
matches, especially for symbolic values like shapes, it is
difficult and expensive to search through the powerset of an
object’s features. For these reasons, we focus only on the
timing and room-based triggers.

There are two main parameters to this domain. The first
parameter is the decay rate (d in Figure 1), which determines
how quickly a memory element is forgotten. The decay rate
is a real number between 0 and 1, exclusive: the larger the
decay rate, the more quickly forgetting occurs. The second
parameter is the speed of the robot, which determines how

 10

 100

 1000

 10000

 0.5 0.6 0.7 0.8 0.9

M
a

x
im

u
m

 D
e

liv
e

ri
e

s

Decay Rate

Figure 3: Number of deliveries an agent can retrieve before
the first delivery is forgotten. y = 0.0196 ∗ e5.61/d + 28.0,
where d is the decay rate. Coefficient of determination R2 =
0.99.

quickly it moves forward in the simulated environment. The
slower the robot’s movement, the longer the goal must remain
in working memory and not be forgotten. Varying the speed
of the agent therefore changes the temporal dynamics of the
domain, to which the strategies must adapt.

For the robot delivery task, the main measurement of
performance is the percentage of deliveries that the agent
successfully completes. Unless the agent completes all of
its deliveries, it is stopped after the third round of patrol.
Additionally, we also measure the efficiency of the agent: the
ideal agent should make only the retrievals and rehearsals
necessary for the task and no more. Agents that complete the
same number of deliveries with less time spent on memory
management are preferred.

Results
Scaling
To determine the maximum number of retrievable deliveries,
agents with different decay rates are given increasing number
of deliveries to retrieve, until the first delivery decays
sufficiently to be removed from memory. The empirical
results (Figure 3) suggest that although such a limit exists,
the limit increases exponentially as the decay rate decreases.
This relationship is derived from the base-level activation
equation, and applies to both ACT-R and Soar. After the
activation of a delivery is initially boosted by its retrieval,
it simply decays while other deliveries are retrieved. Over
different decay rates, this results in the exponential curve
shown.

Note that although a similar limit exists for rehearsals,
the equivalent question is less well-defined. The number
of deliveries that could be rehearsed until the first delivery
is forgotten — or until the first delivery returns to its
original level of activation — depends not only on the
decay rate and the amount of rehearsal, but also on the
level of activation prior to rehearsal. The limit is therefore
also dependent on when the rehearsal is performed, as
the activation increases and decreases over the lifetime
of the agent. Furthermore, since neither decay rate nor
activation information is declaratively available, the agent
cannot dynamically adapt the number of rehearsals. There

Decay Timing Room Entry
Rate 4 16 64 4 16 64
0.34 100 100 100 100 100 100
0.38 100 100 100 76.36 80.0 94.54
0.42 56.36 60.0 41.81 7.27 5.45 5.45
0.46 3.63 3.63 7.27 0.0 0.0 0.0
0.50 0.0 0.0 0.0 0.0 0.0 0.0

Table 1: Percentage of deliveries completed by agents with
different decay rates. The second heading is the number of
rehearsals under different triggers. The agent speed was set
to 0.7; the timing trigger fired every 400 steps.

is therefore little practical benefit in computing a limit on
rehearsals.

Rehearsal Performance
Although preemptive strategies can be separated into proac-
tive and reactive approaches, it may be sufficient to only take
the proactive approach. Within the robot delivery task, this is
equivalent to rehearsing deliveries such that they are never
forgotten, thus rendering retrievals unnecessary. This allows
agents to selectively avoid forgetting memory elements, and
is well suited to memories where forgotten knowledge is
not easily recovered — for example, ACT-R’s declarative
memory.

Table 1 shows the performance of the agent at different
decay rates, with different numbers of rehearsals at the
trigger. For the timing trigger, these results suggest that with
sufficient rehearsals, the agent is able to prevent deliveries
from being forgotten. This result is due to the high correlation
between the trigger and the passage of time, which ultimately
causes the decay of activation. As long as the timing unit is
correlated with the unit of activation decay — which is true
of the motor outputs in this domain — a timing trigger can
be used to selective prevent memory elements from being
forgotten. This may, however, consume an unreasonable
amount of effort: for an agent to rehearse 64 times (at decay
rate 0.3), over 9% of the agent’s time is spent in preventing
goals from being forgotten. To avoid excessive rehearsals,
then, the number of rehearsals should be matched to the decay
rate.

The need to adjust the decay rate and number of rehearsals
is more apparent when the effects of decay rate is considered
while holding the amount of rehearsals constant. The results
show that small increases in the decay rate causes a sharp
drop-off in performance. The cause of this behavior is
discussed in the next section, but it suggests that the amount
of rehearsal should be determined by the agent designer.

The domain-dependent trigger also performs well below
a particular decay rate; however, the decay rate is not the
only factor influencing its performance. Table 2 shows the
result of the same experiment on agents with different speeds,
while keeping the decay rate constant at 0.4. While the timing
trigger performs equally well across different agent velocities,
the performance of the domain trigger decreases with the
speed of the agent. Due to the agent’s slower movement,
there is increased time between the rehearsal of a delivery
and the perception of the object, allowing the delivery to

Speed Timing Room Entry
4 16 64 4 16 64

0.3 90.9 90.9 90.9 18.1 18.1 22.7
0.5 95.4 81.8 95.4 22.7 22.7 13.6
0.7 92.7 92.7 92.7 56.3 36.3 34.5
0.9 87.2 92.7 92.7 40.0 36.3 34.5
1.1 92.7 98.1 90.9 52.7 36.3 23.6

Table 2: Percentage of deliveries completed by agents with
different speeds. The second heading is the number of
rehearsals under different triggers. The decay rate was set to
0.4; the timing trigger fired every 400 steps.

be forgotten while the agent is (for example) completing a
different delivery.

Taken together, these two results suggest that while it
is possible to retain goals in memory through rehearsals
alone, this requires knowledge of both the agent’s forgetting
mechanism as well as the temporal dynamics of the domain;
there is no magical amount of rehearsal and trigger that
will work across all domains and decay rates. For timing
triggers, task performance and resource consumption may be
difficult to balance without experimentation, as it partially
depends on how often perceptions boost the activation of
goals. Domain triggers are also dependent on the domain, not
only for the features that determine the trigger, but also for
the time between that feature and the opportunity to act.

Retrieval Performance
We now focus on the retrieval of already forgotten elements,
which applies to ACT-R’s working memory, where rehearsal
cannot prevent information loss.

The performance of agents with different decay rates using
retrieval strategies are shown in Figure 4. Two differences
between these results and those for rehearsals strategies
require explanation: first, retrieval strategies do not perform
as well as rehearsal strategies, even at low decay rates;
and second, retrieval strategies allow the agent to perform
deliveries at a greater range of decay rates. The two behaviors
have the same underlying cause as the sharp decline seen
in rehearsal strategies: that rehearsal strategies can either
maintain deliveries indefinitely if the decay rate is sufficiently
low, or deliveries are lost relatively quickly above the
threshold. If the amount of rehearsal is not sufficient to retain
the deliveries in memory, all deliveries will be eventually
forgotten. Since the rehearsal agents do not retrieve forgotten
deliveries in this evaluation, they fail to complete any more
deliveries — hence the sharp drop-off in performance for the
rehearsal agents. In contrast, the decay rate does not need
to be as carefully calibrated for retrieval strategies, as the
agent simply recovers when a delivery is forgotten. Thus,
although deliveries may be forgotten earlier due to the lack
of rehearsals, this does not effect agent task performance
until it reaches extreme levels. For the same reason, agent
performance remains stable across velocities: even if a
delivery is forgotten after its retrieval, the agent has a second
opportunity to complete the delivery when it enters the room
again.

Examination of the results also show that while the timing

 0

 20

 40

 60

 80

 100

 0.4 0.5 0.6 0.7 0.8

%
 D

e
liv

e
ri
e

s
 C

o
m

p
le

te
d

Decay Rate

Timing
Room Entry

Figure 4: Percentage of deliveries completed by retrieval
agents with different decay rates and triggers. The agent
speed was set to 0.7; the timing trigger fired every 400 steps.

trigger outperforms the room entry trigger, it is performing
more retrievals. At decay rate 0.54, the timing trigger requires
1.5 times as many retrievals per delivery completed than the
room entry trigger (19.3 vs. 12.3), and this ratio grows as
the decay rate is increased. The efficiency of the room entry
trigger is due to it being highly predictive of opportunity;
many of the retrievals due to timing triggers do not lead to
action on the part of the agent. This may occur if deliveries
are retrieved when the agent does not perceive any objects,
or when all deliveries have already been made for the room.
With the room entry trigger, the embedded domain knowledge
makes it more likely that an opportunity to act is present.
The high probability of a relevant retrieval allows the agent
to reduce the number of retrievals without comprising its
performance.

Conclusion

In this paper, we introduced a class of preemptive strategies
to overcome the forgetting of goals. These strategies do
not require architectural modification, and in their simplest
form can be implemented by any forgetful architecture
with memory retrievals. These strategies were tested in a
Soar agent in a simulated robot domain, showing that they
perform well when the decay rate is low and when the trigger
accurately predicts opportunities to act, and can continue to
operate as these ideal conditions degrade. While this behavior
is tied to the mechanism of forgetting, the qualitative behavior
holds for any architecture where the likelihood of forgetting
increases over time. As implemented, these strategies are
sensitive to both the forgetting mechanism and the domain,
as they require parameters in the form of environmental
context-switch tiggers and timing triggers that match the
forgetting mechanism. Further research may allow agents to
dynamically select between triggers and adapt them to the
environment.

Acknowledgments

The authors acknowledge the funding support of the Office
of Naval Research under grant number N00014-08-1-0099.

References
Altmann, E. M., and Trafton, J. G. 2002. Memory for goals:
An activation-based model. Cognitive Science 26(1):39–83.
Anderson, J. R., and Douglass, S. 2001. Tower of
hanoi: Evidence for the cost of goal retrieval. Journal of
Experimental Psychology: Learning, Memory, and Cognition
27(6):1331–1346.
Anderson, J. R. 1990. The Adaptive Character of Thought.
Psychology Press.
Anderson, J. R. 2007. How Can the Human Mind Occur in
the Physical Universe? New York, NY: Oxford University
Press.
Cassimatis, N. L.; Bignoli, P. G.; Bugajska, M. D.; Dugas,
S.; Kurup, U.; Murugesan, A.; and Bello, P. 2010. An
architecture for adaptive algorithmic hybrids. Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on
40(3):903–914.
Derbinsky, N., and Laird, J. E. 2012. Competence-
preserving retention of learned knowledge in Soar’s working
and procedural memories. In Proceedings of the 11th

International Conference on Cognitive Modeling (ICCM).
Elio, R. 2006. On modeling intentions for prospective
memory performance. In Proceedings of the 28th Annual
Conference of the Cognitive Science Society (CogSci), 1269–
1274.
Ellis, J. 1996. Prospective memory or the realization of
delayed intentions: A conceptual framework for research. In
Brandimonte, M.; Einstein, G. O.; and McDaniel, M. A., eds.,
Prospective Memory: Theory and Applications. Mahwah,
New Jersey: Lawrence Erlbaum.
Forgy, C. L. 1979. On the Efficient Implementation of
Production Systems. Ph.D. Dissertation, Carnegie Mellon
University, Pittsburgh, PA.
Gobet, F., and Lane, P. 2010. The CHREST architecture
of cognition the role of perception in general intelligence.
In Proceedings of the 3rd Conference on Artificial General
Intelligence (AGI).
Harris, J. E. 1984. Remembering to do things: A forgotten
topic. In Harris, J. E., and Morris, P. E., eds., Everyday
Memory, Actions and Absent-mindedness. Academic Press.
71–92.
Laird, J. E. 2012. The Soar Cognitive Architecture.
Cambridge, MA: MIT Press.
Lebiere, C., and Lee, F. J. 2002. Intention superiority effect:
A context-switching account. Cognitive Systems Research
3(1):57–65.
Li, J.; Derbinsky, N.; and Laird, J. E. 2012. Functional
interactions between memory and recognition judgments.
In Proceedings of the 26th AAAI Conference on Artificial
Intelligence (AAAI), 228–234.
McDaniel, M. A., and Einstein, G. O. 2000. Strategic
and automatic processes in prospective memory retrieval:
A multiprocess framework. Applied Cognitive Psychology
14(7):S127–S144.

Minton, S. 1995. Quantitative results concerning the utility
of explanation-based learning. In Ram, A., and Leake, D. B.,
eds., Goal-Driven Learning. MIT Press.
Schooler, L. J., and Hertwig, R. 2005. How forgetting aids
heuristic inference. Psychological Review 112(3):610–628.
Sellen, A. J.; Louie, G.; Harris, J. E.; and Wilkins, A. J.
1997. What brings intentions to mind? An in situ study of
prospective memory. Memory 5:483–507.
Simina, M. D., and Kolodner, J. L. 1995. Opportunistic
reasoning: A design perspective. In Proceedings of the 17th

Annual Conference of the Cognitive Science Society (CogSci),
78–83.
Snaider, J.; McCall, R.; and Franklin, S. 2011. The LIDA
framework as a general tool for AGI. In Proceedings of the
4th Conference on Artificial General Intelligence (AGI).
Sun, R. 2006. The CLARION cognitive architecture:
Extending cognitive modeling to social simulation. In Sun, R.,
ed., Cognition and Multi-Agent Interaction: From Cognitive
Modeling to Social Simulation. Cambridge University Press.

