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Abstract

One issue facing agents that accumulate large bodies
of knowledge is determining whether they have knowl-
edge that is relevant to its current goals. Performing
comprehensive searches of long-term memory in every
situation can be computationally expensive and disrup-
tive to task reasoning. In this paper, we demonstrate
that the recognition judgment — a heuristic for whether
memory structures have been previously perceived —
can serve as a low-cost indicator of the existence of
potentially relevant knowledge. We present an approach
for computing both context-dependent and context-
independent recognition judgments using processes and
data shared with declarative memories. We then de-
scribe an initial, efficient implementation in the Soar
cognitive architecture and evaluate our system in a word
sense disambiguation task, showing that it reduces the
number of memory searches without degrading agent
performance.

Introduction

An agent that wishes to act intelligently in its environment
must accumulate a large body of knowledge over its lifetime.
Performing a knowledge search (Newell 1990) is often
necessary to progress in problem solving, but the agent
must often deliberately search its long-term memory for the
small portion of relevant knowledge. Despite much work on
creating efficient memory retrieval algorithms, it remains the
case that memory retrievals are expensive relative to other
reasoning. Moreover, the agent may pay this high computa-
tional cost without return if there is no relevant knowledge
to be retrieved. In order for agents to make informed choices
as to whether resources should be allocated for retrievals, it
is beneficial to have a reliable, inexpensive indicator for the
existence of relevant knowledge in memory.

One such indicator is the recognition judgment, which
signals the agent if an object, a situation, or an event
has been encountered before (Mandler 1980). Imagine, for
example, being on a bus and realizing that you have seen
one of the faces before; after some thinking, you remember
that it is the butcher from the market. This butcher-on-the-
bus example demonstrates how recognition is common and
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useful, in this case contributing to social relationships by
signaling the presence of an acquaintance.

In this paper, we demonstrate that the recognition of
features in the current situation serves as an indication
that there is relevant knowledge to bring to bear. Further-
more, recognition judgments can be obtained with little
computational cost by leveraging the existing processes and
data of the agent’s memory systems. This allows agents
to quickly decide whether there is utility in searching
memory, reducing the likelihood that the resources used in
the retrieval will be wasted.

To evaluate this work, we implemented both context-
dependent and context-independent recognition judgments
in the Soar cognitive architecture (Laird 2012). The system
is then tested on a word sense disambiguation task over
the SemCor corpus (Miller et al. 1993). We show that for
this task, automatic recognition judgments do not present
a computational burden and are predictive of the state of
memory. The result is a reduction in the number of memory
retrievals needed while maintaining the agent’s performance
on the task.

In the following sections, we first review prior work
on recognition and its interactions with memory, from
both psychological and computational standpoints. We then
define the desirable properties of recognition, introduce an
approach for recognition, and detail its implementation in
Soar. Finally, we present results from a formulation of the
word sense disambiguation task, showing that agents with
and without recognition perform comparably while the latter
makes fewer searches of memory.

Related Work

The field of metamemory in psychology includes the study
of how humans know whether knowledge exists in memory.
This signal is called the feeling of knowing (Koriat 1998), of
which recognition plays a part. Although there are accounts
of human involuntary memories — where knowledge from
memory is retrieved without deliberation — feelings of
knowing are mostly discussed in the context of human-
initiated memory searches. As with other metamemory phe-
nomena, recognition acts not only as a source of information
to the agent, but may also guide the agent in its actions
(Nelson and Narens 1990). It has been found that deliberate
human memory retrievals are partially directed by feelings



of knowing about the cue (Reder and Ritter 1992), such
that cues leading to unsuccessful retrievals are filtered out
(Burgess and Shallice 1996). However, research has mostly
focused on other functional benefits of recognition, such as
its use in the recognition heuristic (Goldstein and Gigerenzer
1999), which states that “if one of two objects is recognized
and the other is not, then infer that the recognized object
has the higher value with respect to the criterion.” Both the
recognition heuristic and the use of recognition to control
memory retrievals aim to reduce the cognitive load of the
agent, the former by ignoring additional information and
the latter by not searching memory to conserve resources.
We focus on the interaction between recognition and the
memory system in this work, and draw inspiration from the
use of recognition judgments in humans.

Although there has been no computational model that
empirically demonstrates the functional benefits of recog-
nition in memory retrievals, other computational models of
recognition exist. Most relevant to this paper is a model of
the recognition heuristic in the ACT-R cognitive architecture
(Schooler and Hertwig 2005). In that work, recognition
is simply taken to be the binary result of retrieval: a cue
is considered recognized if the retrieval is successful and
unrecognized otherwise. Although the model accurately
predicted the results of the recognition heuristic in humans,
it conflates the recognition and retrieval operations. The use
of memory retrieval as a direct component of recognition
begs the question of how a feeling of knowing may be
generated prior to retrieval; such a recognition judgment
could never be used to decide whether memory should be
searched. To the best of our knowledge, there has been
no empirical demonstration of the functional benefits of
interactions between recognition and the memory system in
artificial agents.

Defining Recognition

The term “recognition” and what underlying processes it
entails are the subject of some debate within the psychology
literature. For this functional evaluation of recognition, how-
ever, we take recognition to be a binary signal of whether
a “subject” has been previously perceived. Although this
definition stands in the intersection of most other definitions,
an ambiguity remains as to the subject of recognition.
In the literature, recognition has been applied to words,
sentences, pictures, and even audio signals (Shepard 1967),
with little discussion of how these structures are represented
in memory. To simplify the discussion of recognition, this
work focuses on the recognition of the smallest unit of
representation available in an artificial agent, which we call a
“feature.” It seems reasonable to assume that the recognition
of higher-level objects involves the recognition of features,
but how this may be done is beyond of the scope of this
work.

Despite the lack of consensus over the processes be-
hind recognition, there are three agreed-upon characteristics
of the recognition judgment in humans (Goldstein and
Gigerenzer 1999):

Frugality: Recognition is cheap and fast, exacting little-

to-no cognitive cost and remains independent of other
reasoning.

Predictiveness: Recognition reliably reflects the (non-)
existence of knowledge in memory; false negatives are
negligible, although false positives are more common.

Automaticity: Recognition of currently perceived features
does not require deliberate action by the agent, but occurs
regardless of its potential future use.

These characteristics of recognition are crucial to their use in
deciding whether to retrieve from memory. Recognition, by
virtue of it being frugal, becomes a suitable heuristic for the
relatively expensive memory retrieval. For agents operating
in the real world, this computational resource is measured in
time — that is, recognizing the existence of knowledge in
memory should be faster than attempting to retrieve it. An
inexpensive recognition judgment minimizes the additional
cost to retrieval; this is less important when the knowledge
exists in memory (since a retrieval is necessary for the
agent to reason over the information), but in the case where
knowledge does not exist, the difference in cost between
retrieval and recognition defines the utility of this approach.
Another factor in the utility of recognition is whether it
correctly predicts the state of memory; a noisy recognition
judgment presents no advantage to the agent, as a retrieval
may be necessary to verify the judgment. Finally, although
a deliberate recognition judgment is possible, a sufficiently
cheap automatic mechanism may allow the agent to elimi-
nate the cost of deliberately iterating over features to judge
their familiarity as well.

An Approach for Computing Recognition

In this section we introduce a general approach for obtaining
recognition independent of the specific memory system,
guided by the three constraints of frugality, predictiveness,
and automaticity.

Recognition and declarative memories are both part of
a larger memory ecosystem, in which many processes are
under the constraints of efficiency. Indeed, the problem of
efficient memory storage and retrieval has been of great
concern to researchers (Douglass, Ball, and Rodgers 2009;
Derbinsky, Laird, and Smith 2010). In order to create
algorithms that scale well with the size of memory, auxiliary
data structures are often used to maintain indices on the
knowledge stored in memory. These indices must be updated
upon the storage of new knowledge, thereby connect-
ing knowledge-to-be-stored with knowledge-already-stored.
This need for new memory elements to be “assimilated and
integrated” into existing elements may be universal (Koriat,
Goldsmith, and Pansky 2000).

At a high level, recognition similarly requires connecting
new knowledge to what already exists in memory. For
memory storage, new knowledge must be mapped to the
indices into memory in order to update the latter; for recog-
nition, this mapping must be done to determine whether
current perceptions match what was previously stored. This
similarity between recognition and memory storage suggests
that there are benefits for these operations to share processes
and data. More generally, we hypothesize that the indices



used to create scalable algorithms for memory can be
reused to make cost-effect recognition judgments, and our
approach exploits this hypothesis. This approach is also
makes progress towards two of the desired properties of
recognition. First, the reuse of processes and data may
allow recognition to take advantage of previous algorithms
used to improve the efficiency of memory storage, keeping
recognition frugal. Second, because the data for recognition
directly reflects the contents of memory, it is likely to result
in accurate judgments, subject only to distortions due to
optimizations of the memory system.

This general approach to recognition judgments has two
implications. First, since recognition is dictated by the
data structures used by a particular memory system, the
properties of the resulting recognition judgment will be
affected by the properties of the underlying system. In
particular, information discarded by the memory system
could not be taken into account by the recognition judgment,
since that information does not exist in any data structure.
For example, applying this approach to a memory system
that stores features independent of their original context
will result in a context-independent recognition judgment.
Although forcing recognition to take on properties of the
memory system may seem like a limitation of this approach,
the different properties of the resulting recognition judg-
ments may be complementary. Just as a single agent may
contain multiple specialized, dissociated memory systems,
multiple recognition judgments may complement each other
to provide more nuanced information to the agent.

Second, although this approach suggests a method for
computing recognition, other variables in an implementation
of recognition remain to be explored. One parameter thus far
ignored is when the recognition judgment should be made.
The similarity between recognition and storage offers an
obvious choice of using the same trigger for recognition
as for storage. There is, however, no reason why these
two operations must coincide; one could imagine scenarios
where recognition is useful even when no new knowledge
is gained. The impact of different triggers on the utility of
recognition depends on the domain, and an evaluation of
such triggers remains to be done.

Although we have only implemented this approach to
recognition within the memory systems of Soar, we note
that the need for auxiliary memory structures is universal
among cognitive architectures with the goal of scaling to
large stores of knowledge. Thus, while the exact processes
and data shared between recognition and memory may vary
between architectures (and indeed between different mem-
ories within the same architecture), the general approach
would still apply. As a functional approach to recognition,
however, we do not make any claims as to whether this
approach is psychologically plausible. Architectures with a
focus on matching human data (e.g. ACT-R) may therefore
take our work as a starting point for creating a recognition
judgment that more closely matches human data.

Implementation

In the following section, we describe how we implemented
this approach of shared processes between recognition and

memory in the Soar cognitive architecture. We begin by
giving an overview of Soar and its declarative memories,
then describe the data that is being shared. The properties of
the resulting recognition system are sketched, together with
how the recognition judgment is presented to the agent and
how different recognition judgments may be integrated.

The Soar Cognitive Architecture

This work is implemented using the semantic and episodic
memories of the Soar cognitive architecture (Laird 2012).
Soar is an architecture that has been used for developing
intelligent agents that respond to their environments in real
time. In Soar, agent state is contained in its symbolic short-
term working memory, represented as a connected, directed
graph. Working memory contains the agent’s current goals
and any knowledge the agent has brought to bear on
the task. Reasoning proceeds in decision cycles, during
which procedural knowledge, in the form of if-then rules,
modifies the agent state. One such action may be the
retrieval of knowledge from long-term memories, which
contain other background knowledge the agent may need.
Soar contains two long-term declarative memories: semantic
memory (SMem), which stores decontextualized facts about
the world, and episodic memory (EpMem), which stores the
contextualized experiences of the agent. The agent does not
have direct access to knowledge stored in either memory;
instead, these memories are accessed through buffers in
working memory. To retrieve a fact or an episode, the
agent constructs a cue — an acyclic graph of features that
describes the desired knowledge — in a buffer. The specified
memory system then retrieves the fact or episode that “best”
matches the description and recreates it in the buffer, where
the agent can reason over the retrieved knowledge.

Since the semantic and episodic memories in Soar are
specialized for different types of knowledge, the underlying
processes and data kept by each are very different. For
semantic memory, efficient retrievals require the tracking
of commonly occurring features; these counters are then
updated upon memory storage to reflect the features of
the new memory element. The agent is assumed to know
what knowledge may be useful in the future, and semantic
memory therefore requires agent deliberation for knowledge
be stored. In contrast, the storage of knowledge into episodic
memory is automatic; at specific intervals, episodic memory
captures the entire working memory state of the agent. In
order to search through episodes efficiently, the memory
system tracks the historically distinct structures that have
appeared and the temporal intervals in which they existed
in working memory. On storage, the intervals for removed
structures are concluded, while the addition of new struc-
tures results in new intervals being tracked.

Recognition in Soar

Although recognition has not been a core part of Soar theory,
we believe recognition may functionally benefit the architec-
ture. In Soar, the features on which the recognition judgment
operates are the edges in its graph structure; this is the data
into which memory systems index and which the recognition
judgment reuses. In semantic memory, recognition uses the



counters for features to determine whether a feature has
been perceived before, while in episodic memory the indices
to historically distinct graph structures — some of which
correspond to features — are used.

Since the semantic and episodic memories were designed
to store different types of knowledge, the resulting recog-
nition judgments have different properties. The recognition
judgment for semantic memory operates on the features
of objects currently perceived, and returns a “recognized”
judgment if the counter for that feature is above a threshold,
in this work set to zero for simplicity. As with semantic
memory, this recognition judgment is decontextualized; as
long as the particular feature has been perceived before
(and stored in semantic memory), a “recognized” judgment
is returned, regardless of the object or structure the fea-
ture originally described. For this reason, recognition for
semantic memory cannot differentiate between instances of
features in one object versus another.

Recognition for episodic memory operates with different
properties. Since episodic memory is fully contextualized,
this recognition judgment is sensitive to the object to which
a feature belonged. By accessing only the indices into
graph structures (and not the graph structures themselves),
a recognition judgment does not need to perform expensive
matching to determine whether a feature has been previously
perceived in the same structure. Due to the importance
of context, however, episodic recognition does not give a
positive response to previously-perceived features if they are
in new structures. For example, episodic memory would not
recognize the butcher in the introductory example, as the
context in which the feature appeared (the bus) does not
match the context of its previous appearance (the market).

For both memories, the recognition judgment is automat-
ically applied to all new features currently perceived by
the agent. These results are represented to the agent in the
respective buffers for the different memories. We make the
simplifying assumption that both recognition judgments are
triggered at the same time as episodic storage; this gives
the agent a complete assessment of its working memory
state automatically at specified intervals. In particular, since
both recognition judgments refer to the same agent state, the
agent can integrate the two signals via deliberate reasoning.
An example of knowledge derivable from the two signals
— which neither judgments could indicate on their own
— is the perception of an old feature in a new context.
Semantic recognition would judge the feature as old, but
be unable to point out its new context, while episodic
recognition would judge the feature as new but be unable
to point out that the feature has been perceived before
elsewhere. The full meaning of the different possible values
of recognition for the two memories is shown in Table 1. The
response of the recognition judgments to different properties
of features allow the judgments to complement each other
when combined.

Evaluation
To evaluate the frugality, predictiveness, and reduction of
memory retrievals of our work, we tested our system in a
word sense disambiguation task. Word sense disambiguation

Not Recognized | Recognized
by EpMem by EpMem
Not Recognized feat old, un-stored
by SMem new feature feature
Recognized old feature in old feature in
by SMem new context old context

Table 1: Facts inferable by combining the recognition judgments of
both semantic and episodic memories.

is well-suited as an evaluation domain as it involves the
repeated perception of features (words) under different
contexts. All experiments were run on a 2.8GHz Core 2
Extreme processor with 4GB of RAM.

Domain

Word sense disambiguation is an important problem in the
field of natural language processing (Navigli 2009), as many
words in English are polysemous (i.e. have two or more
meanings). In this task, an agent is given a sentence and
must determine which of several meanings a particular word
carries. For example, the word “ran” has different meanings
in the following sentences:

e He ran the race.
e He ran the code.

In a corpus of sentences, the correct meaning (or sense)
of a word is indicated by an index into some dictionary.
For this evaluation, we use the SemCor corpus (Miller et
al. 1993), which contains words tagged with senses from
WordNet (Miller 1995), the most-used dictionary for word
sense disambiguation.

We adopt a formulation of the word sense disambiguation
task that focuses not on natural language processing but
on the functional benefits of recognition. Sentences from
SemCor were converted into a parse tree using the RASP
parser (Briscoe, Carroll, and Watson 2006). A small portion
of sentences were parsed incorrectly and were discarded.
These errors were due to a mismatch between the sense-
tag data and the parse tree, where tagged phrases (e.g. “put
down”) were split into multiple leaf nodes in the parse
tree despite representing a semantic unit. For each sense-
tagged word in correctly-parsed sentences, the environment
supplies the agent with the word to be disambiguated and
the sentence parse tree, and the agent responds with a
WordNet word sense corresponding to the word’s meaning.
The environment then gives feedback to the agent: the true
sense of the word and whether the given sense was correct.

All correctly-parsed sentences in SemCor were used
in this evaluation, presenting 91,046 words for the agent
to disambiguate, 17,196 of which are distinct. There are
therefore 91,046 — 17,196 = 73,850 repeated exposures of
individual words. Taking into account the syntactic location
of a word, this task presents the agent with 61,973 distinct
location-word pairs, meaning 91,046 — 61,973 = 29,073
location-word pairs should be recognizable. Together, an
oracle should achieve 70.9% performance if it began with no
knowledge but could correctly identify the sense of a word
once it has seen the pairing.



Agent Design

When the agent is presented with a parse tree and a word, the
agent considers searching its episodic memory and semantic
memory (in that order) for knowledge of the word’s sense.
For both memories, the retrieval only occurs if the word
is recognized with respect to that memory. In episodic
memory, the syntactic location of the word is used as its
context; a more realistic definition of context would require
a detailed linguistic representation of the sentence, which
is outside the scope of this work. For both memories, if a
word sense is found from retrieval, it is used as the response;
otherwise, the agent responds with “don’t know”. After the
environment provides the agent with feedback, the agent
stores the correct word sense in both memories for future
retrieval. All agents begin the task with no word sense
knowledge and must accumulate this knowledge through the
feedback given as it progresses.

We examine the benefits of recognition by looking at
agents with their semantic and episodic memories lesioned
to various degrees. For both memories, we define three
conditions:

Jull (F) the agent uses its recognition judgment to de-
cide whether to attempt a retrieval; only if the to-be-
disambiguated word is recognized does the agent search
memory.

retrieve (R) the agent always attempts a retrieval regardless
of the results of its recognition judgment; this is equiva-
lent to the agent recognizing all words.

disabled (D) the agent never retrieves from the memory;
this is equivalent to the memory not containing relevant
knowledge.

Comparing agents across the two memories in these three
conditions allows us to separate the effects of recognition
from retrieval and of one memory from the other. For ease of
description, we refer to a particular agent by the conditions
of its memories; an agent with Semantic memory on Full
and Episodic memory on Retrieve would be the SFER agent.

This evaluation is designed to answer three questions
about our approach to recognition and its benefits:

Frugality: How expensive is recognition in terms of com-
putation time?

Predictiveness: How reliable is recognition? What are the
false-positive and false-negative rates?

Decreased Reduction: How effective is recognition in re-
ducing the number of retrievals from memory? How is
task performance affected as a result?

The main hypothesis is that a recognition judgment that
reuses processes and data from the memory system is frugal,
predictive, and can reduce the number of retrievals from
memory while correctly disambiguating the same number
of words.

Frugality Results

To determine whether our approach to recognition incurs
significant cost to the agent, we tested the SDED agent on

Avg. Time | Max Time
(msec) (msec)
baseline 0.436 3.66
calculated 0.458 4.00
represented 1.09 8.67

Table 2: Average and maximum decision times for agents with
and without recognition. The middle row shows the cost of the
computation of recognition, without the cost of representing it
to the agent. The differences between variations are significant
(p < 0.001).

the word sense disambiguation task, but limited the recog-
nition judgment to a particular stage. In the baseline stage,
the architecture does not compute recognition information
at all, although both semantic and episodic memories are
active and in use (for storing the correct word senses). In
the calculated stage, the recognition judgment is calculated
internally, but it is not represented to the agent. Finally, in
the represented stage, the recognition judgment is calculated
and represented to the agent as a structure in working
memory. The separation of the costs of calculation and
representation is due to previous work suggesting that the
addition and removal of elements from working memory
could be expensive; the difference between the two shows
the cost of changing working memory. It should be noted
that we are not committed to representing recognition
judgments in working memorys; this is simply a first step in
exploring how recognition can be integrated with a general
cognitive architecture. Also note that these stages are dif-
ferent from the conditions of memory defined above; here
the difference is in whether the Soar architecture computes
recognition, while the same SDED agent is used throughout.
In each of these variations, we measure both the average
and maximum time needed for a decision cycle. While the
former measures the expected cost of recognition to the
agent, the latter conveys whether recognition significantly
delays other processes in the worst case.

The results for this test are shown in Table 2. By com-
paring the first two rows, it can be seen that the calculation
of the recognition judgment itself has very low costs, using
only 5-9% more time than if recognition was not calculated.
However, there is a high cost associated with conveying
recognition information to the agent, more than doubling
the time required. Further experiments showed that the
additional costs were incurred when the agent accesses the
recognition judgments; the number of unrecognized features
led to the creation of hyperedges, which are expensive in rule
matching. These results suggest that although this approach
to recognition is efficient, care must be taken in how this
information is represented to the agent.

Predictiveness Results

To develop a good understanding of the correctness of
recognition, we divide this evaluation into false-positive
and false-negative rates. As these statistics are often used
to measure the performance of an agent on a task, it
should be emphasized that these are not the rate at which
the agents correctly disambiguate words; rather, it is the



rate at which the recognition judgment correctly predicts
whether retrievals will succeed or fail. To illustrate this
point, consider attempts to disambiguate “ran” in these two
sentences:

e He ran the race.
e He ran the code.

Since the word “ran” has the same lexical form and is in
the same syntactic location in both sentences, both semantic
and episodic memory would produce incorrect word senses
when disambiguating the second sentence after the answer
for the first is stored. However, both recognition judgments
will correctly recognize the word “ran,” and correctly predict
that information will be successfully retrieved from memory,
despite the retrieved knowledge being incorrect. Thus, the
second sentence counts towards the true-positive rate of both
recognition judgments.

False positives occur when a feature is recognized but
does not exist in memory. Since Soar’s memories guarantee
completeness — that is, a searched-for memory is guaran-
teed to be returned if it exists — a false positive recognition
judgment would cause the agent to attempt a retrieval and
fail. To measure the false-positive rate of each recognition
judgment, we compared the number of words recognized to
the number of words successfully retrieved by the SFED and
SDEF agents. Again, note that this metric is not concerned
with the correctness of the retrieved word sense, only that the
retrieval was successful. Whether the retrieved knowledge
is correct depends on the retrieval biases of the memory
system and has been explored in previous work (Derbinsky
and Laird 2011).

In contrast with a false positive, a false negative occurs
when a feature is not recognized but can in fact be retrieved
from memory. This metric can be calculated by comparing
the number of words an agent recognizes to the number of
words that should be recognized. Note that the latter number
is different for semantic and episodic memory, as they have
different representations of knowledge.

For the word sense disambiguation task, both recognition
judgments perfectly predicted the existence of knowledge in
memory, leading to false-positive and false-negative rates of
0%. However, it should be noted that this result is highly
dependent on the representation of knowledge; a previous
iteration of the agents — which represented the agent state
differently — had a false-positive rate as high as 38.6%.
The errors stem from having a sentence-independent edge
to the ambiguous word, which was interpreted as part of
the syntactic location by the architecture. Since episodic
memory recognition relies on the syntactic location of
the word as context, the non-changing ‘“context” led to
undesirable matches in memory.

More generally, errors may occur in recognition when
information about previous knowledge is not directly acces-
sible, such that recognition cannot account for the discrep-
ancy. Examples of changes in state that would lead to errors
are shown in Figure 1. Although recognition in semantic
memory works on single features, cues for retrieval may
specify multiple features, all of which must exist in the
retrieved memory element. The recognition of individual

a. SMem b. EpMem

Figure 1: Scenarios in which SMem and EpMem would give false-
positive recognition judgments. The individual graphs represent an
agent state over time.

features in Figures 1.a.i and 1.a.ii will incorrectly predict
the successful retrieval of the pattern in Figure 1.a.iii.
For semantic memory, the co-occurrence of individually
recognized features cannot be predicted with this approach.
A similar error occurs in episodic memory. Optimizations
in memory storage leads to the aliasing of the shaded node
in Figure 1.b.ii; this causes a false recognition of the edge
labeled z in Figure 1.b.iii, as it has been perceived under an
alias in Figure 1.b.i.

These issues suggest that the design of both memory
architectures as well as agents need to take into account
how recognition operates. The space of tradeoffs between
agent design, memory systems, and recognition judgments
remains to be explored.

Decreased Retrievals Results

The third question to be addressed in this evaluation is
whether taking the recognition judgment into account could
reduce the number of potentially expensive retrievals from
memory. We would like to understand whether reducing
the number of retrievals with recognition would degrade
the overall performance of the agent in the word sense
disambiguation task, and if that is the case, which of the
two types of recognition have a larger effect. For this
evaluation, we looked at agents in each of the permutations
of the conditions of the memory systems. The disabling of a
particular memory shows the baseline contribution the other
memory makes to the agent’s performance.

The results are shown in Table 3; the top and bottom
numbers represent the number of retrievals in EpMem and
SMem respectively. Recognition for episodic memory (com-
paring the top number across the first two rows) reduced the
number of retrievals from 91,046 to 29,073, for a 68.1%
decrease. Recognition for semantic memory had a similar
effect: both with and without episodic memory, the number
of retrievals from semantic memory (comparing the bottom
numbers across the first two columns) were reduced by at
least 18.8%. This effect is smaller due to more words being
recognized (since context was not taken into account).

Although the number of retrievals is greatly reduced,



SMem SMem SMem
Jull (SF) | retrieve (SR) | disabled (SD)

EpMem 29,073 29,073 29,073
full (EF) 44,776 61,972 0

EpMem 91,046 91,046 91,046
retrieve (ER) 44,776 61,972 0
EpMem 0 0 0
disabled (ED) 73,850 91,046 0

Table 3: The number of retrievals made by the memories. On top
is the number of retrievals made by EpMem, on bottom is the
number of retrievals made by SMem. Note that when EpMem isn’t
disabled, SMem only retrieves if EpMem fails.

this is not a desirable result if task performance drops
correspondingly. However, this is not the case. Due to the
perfect predictions of both recognition memories, there was
no negative effect on the task performance of the agent. Both
the SFEF and the SRER agents (top-left and middle-center
in Table 3) correctly disambiguated 44.7% of the words,
out of a possible 70.9% by the oracle. Overall, these results
suggest that for this task, recognition is effective in filtering
out retrievals that would fail, at no cost to task performance.

Discussion

This paper has demonstrated that recognition is useful in
predicting whether or not memory retrievals will fail. In
a word sense disambiguation task, we demonstrated that
recognition can reduce the number of retrievals up to 60%,
while suffering no decrease in task performance. Further-
more, the recognition judgment is frugal and predictive,
although care must be taken to represent this information
efficiently to the agent. These results provide evidence that
tightly coupling recognition with the memory system is an
effective and useful approach.

More generally, this paper has shown that metamemory
phenomena may provide functional benefits to the agent.
This suggests that there may exist a tradeoff between
the resources spent accessing memory and the amount of
information returned. Recognition is one extreme in this
space, where a single bit of information is returned at
little cost, while a comprehensive search of memory may
return the full context of some knowledge at the cost
of time. Whether there exists other points of interest on
this continuum remains a topic for exploration; however,
psychology literature suggests that tip-of-the-tongue states,
where information is partially retrieved, may be one such
option.

Acknowledgments
The authors acknowledge the funding support of the Office
of Naval Research under grant number N00014-08-1-0099

and the Air Force Office of Scientific Research, contract
FA2386-10-1-4127.

References

Briscoe, T.; Carroll, J.; and Watson, R. 2006. The second
release of the RASP system. In Proceedings of the COL-
ING/ACL on Interactive presentation sessions, COLING-

ACL °06, 77-80. Stroudsburg, PA, USA: Association for
Computational Linguistics.

Burgess, P. W., and Shallice, T. 1996. Confabulation and the
control of recollection. Memory 4(4):359—412.

Derbinsky, N., and Laird, J. E. 2011. A functional
analysis of historical memory retrieval bias in the word
sense disambiguation task. In Proceedings of the 25th AAAI
Conference on Artificial Intelligence (AAAI), 663-668.

Derbinsky, N.; Laird, J. E.; and Smith, B. 2010. Towards
efficiently supporting large symbolic declarative memories.
In Proceedings of the 10th International Conference on
Cognitive Modeling (ICCM), 49-54.

Douglass, S.; Ball, J.; and Rodgers, S. 2009. Large
declarative memories in ACT-R. In Proceedings of the 9th
International Conference on Cognitive Modeling (ICCM).
Goldstein, D. G., and Gigerenzer, G. 1999. The recognition
heuristic: How ignorance makes us smart. In Gigerenzer,
G.; Todd, P. M.; and the ABC Research Group., eds., Simple
Heuristics That Make Us Smart. Oxford University Press.
37-58.

Koriat, A.; Goldsmith, M.; and Pansky, A. 2000. Toward
a psychology of memory accuracy. Annual Review of
Psychology 51(1):481-537.

Koriat, A. 1998. Metamemory: The feeling of knowing and
its vagaries. In Sabourin, M.; Craik, F. I. M.; and Robert,
M., eds., Advances in Psychological Science, Volume 2:
Biological and Cognitive Aspects. Psychology Press.

Laird, J. E. 2012. The Soar Cognitive Architecture. MIT
Press.

Mandler, G. 1980. Recognizing: The judgment of previous
occurrence. Psychological Review 87(3):252-271.

Miller, G. A.; Leacock, C.; Tengi, R.; and Bunker, R. T.
1993. A semantic concordance. In Proceedings of the
Workshop on Human Language Technology, HLT *93, 303—
308. Stroudsburg, PA, USA: Association for Computational
Linguistics.

Miller, G. A. 1995. WordNet: A lexical database for english.
Commun. ACM 38(11):39-41.

Navigli, R. 2009. Word sense disambiguation: A survey.
ACM Computing Surveys (CSUR) 41(2).

Nelson, T. O., and Narens, L. 1990. Metamemory: A
theoretical framework and new findings. volume 26 of
Psychology of Learning and Motivation. Academic Press.
125-173.

Newell, A. 1990. Unified Theories of Cognition. Harvard
University Press.

Reder, L. M., and Ritter, F. E. 1992. What determines
initial feeling of knowing? familiarity with question terms,
not with the answer. Journal of Experimental Psychology:
Learning, Memory, and Cognition 18(3):435-451.
Schooler, L. J., and Hertwig, R. 2005. How forgetting aids
heuristic inference. Psychological Review 112(3):610-628.
Shepard, R. N.  1967. Recognition memory for words,
sentences, and pictures. Journal of Verbal Learning and
Verbal Behavior 6(1):156—-163.



