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Abstract
Semantic and co-occurrence memory associations aid the re-
trieval of relevant memory elements from long term memory,
but little is understood about how semantics and co-occurrence
interact in this process. This paper explores the relationship
between these associations via computational memory model-
ing in a Bayesian framework. We assessed the performance
of eleven candidate mechanisms on two linguistic tasks - the
Word Sense Disambiguation task and the Remote Associates
Test. The most successful mechanisms use co-occurrence
associations to modulate semantic associations by removing
from or adding to the context or pool of candidates for re-
trieval, consistent with recent experimental work in memory
retrieval. Although these results are a promising first step
for understanding the relationship between semantic and co-
occurrence associations in memory retrieval, more empirical
human data is needed to validate the proposed interactions be-
tween these associations.
Keywords: Long-term Memory Retrieval; Semantics; Co-
occurrence; Bayesian Memory

1 Introduction
Memory retrieval is a complex process, dependent on factors
including past retrieval history, working memory context, and
associations between elements in long-term memory. These
associations could come from many sources; two common
sources are that of co-occurrence and semantic associations,
which have both been shown to affect memory retrieval. The
effects of semantic and co-occurrence associations have often
been studied separately, both experimentally and with com-
putational modeling (Schatz, Jones, & Laird, 2022; Green-
berg & Verfaellie, 2010). Recent experimental work in psy-
chology and neuroscience, however, suggests that the rela-
tionship between co-occurrence and semantics is also impor-
tant to their role in memory retrieval, though the nature of this
relationship has yet to be fully explored (Manning, Sperling,
Sharan, Rosenberg, & Kahana, 2012; Ferreira, Charest, &
Wimber, 2019; Greenberg & Verfaellie, 2010). For cognitive
modeling in particular, previous computational memory mod-
els have not consistently defined co-occurrence and semantic
retrieval mechanisms, or considered their relationship to be
important to their functionality, despite recent experimental
progress (Chater et al., 2020; Roelke et al., 2018; Hofmann,
Kleemann, Roelke-Wellmann, Vorstius, & Radach, 2022).

In this paper, we investigate the nature of the relationship
between semantics and co-occurrence using Bayesian mem-
ory models. Using computational models, rather than experi-
mental approaches, has the potential to clarify the relationship

between semantics and co-occurrence for human long term
memory retrieval and representations of this process in cogni-
tive models. Computational models enable the exploration of
possible memory retrieval mechanisms in a simplified frame-
work that can be compared to experimental data later on if
necessary. As such, with this work, we explore the space of
potential relationships between semantics and co-occurrence
for long term memory retrieval with the aim of illuminating
psychological features of their relationship and inspiring its
consideration in future computational modeling implementa-
tions and psychological experiments. 1

2 Bayesian Memory Modeling
Co-occurrence and semantics refer to associations between
memory elements that aid and influence long term memory
retrieval. As an example, consider the words “animal”, “rat”,
and “pack”. The words “rat” and “animal” have a semantic
association since rats are animals; on the other hand, “rat”
and “pack” have a co-occurrence association, since they are
more likely to occur together in the compound word, “pack-
rat”. In this paper, we are interested in how the presence of
both “animal” and “pack” together might influence the re-
trieval of “rat”.

We explore this question within a probabilistic Bayesian
approach, commonly used in psychological models to deter-
mine which memory elements to retrieve into working mem-
ory given some immediate context (Tulving & Craik, 2005).
Evidence suggests that human memory is only approximately
Bayesian, since it is subject to error in encoding, storage, and
recall, and is limited to only the biased group of experiences
we’ve encountered (Chater et al., 2020). Nonetheless, in the
idealized case, the memory retrieved m is one from the set of
viable retrieval candidates M with the highest posterior prob-
ability given some working memory context C; that is,

argmax
m∈M

P(m|C) = argmax
m∈M

P(C|m)P(m)

P(C)

P(m) and P(C) do not depend on the relationship between
co-occurrence and semantics, and thus we are primarily in-
terested in the likelihood P(C|m), which is defined differ-

1The code for this paper is available at
https://github.com/Lily-Gebhart/Exploring-Integrated-Mechanisms



ently for retrieval mechanisms such as semantics and co-
occurrence.

For semantic retrieval, P(C|m) is calculated based on
spreading activation and base-level activation, which has been
shown to reflect a Bayesian estimate of need odds (Anderson
& Milson, 1989; Anderson & Schooler, 1991). Our SEMAN-
TIC retrieval agent implements this mechanism over task-
specific semantic networks. When a memory element is re-
trieved, it is activated, with additional diminished activation
spreading throughout the connections of a semantic network,
beginning with neighbors of the retrieved memory element
(Thomson & Lebiere, 2013; Taatgen, Lebiere, & Anderson,
2006). Spreading activation is defined as

P(C|m) ∝ actm =
n

∑
k=1

1
2dist(m,k)

t−d
k

where the activation for the memory element of interest m is
the sum of the spreading activation it has received previously
from each of the n memory elements k, with dist(m,k) the
distance between memory elements m and k in the seman-
tic network, tk the time since the spreading activation from k
occurred, and d a time decay term.

For co-occurrence, P(C|m) is extracted from the statisti-
cal co-occurrence of words or concepts in natural language,
approximated through sources such as the Google Books
ngrams database (Michel et al., 2011) and SemCor corpus
(Miller, Leacock, Tengi, & Bunker, 1993). We make the sim-
plifying assumption that the co-occurrence probabilities be-
tween each candidate memory element mi and each context
memory element c j in the current working memory context C
are independent, meaning that the likelihood is the product of
all P(mi|c j) probabilities. This mechanism is the basis of our
CO-OCCURRENCE agent that uses task-specific statistics.

3 Integrated Mechanisms
While the likelihood term is well defined for semantics and
co-occurrence associations separately, we are interested in the
question of how it might be defined when both associations
are involved. In Table 1 below, we define eleven candidate
mechanisms that explore the relationships between the se-
mantic and co-occurrence associations. These mechanisms
can be organized into five categories based on the nature of
the psychological relationships they capture, with the goal of
exploring the space of potential psychological relationships
between these associations.

Two of the mechanisms assume that semantics and co-
occurrence are Independent in the memory retrieval process,
and combine their respective probabilities accordingly. Since
semantics and co-occurrence have been primarily studied in
isolation from each other in the literature (Greenberg & Ver-
faellie, 2010), our proposed mechanisms make the simplify-
ing assumption that they are derived from different sources
with separate roles in memory retrieval. Two other mecha-
nisms also consider semantic and co-occurrence information
as probabilities, but determine retrieval candidates based on

features of the semantic and co-occurrence probability dis-
tributions, namely their variance and maxima. Intuitively,
higher confidence retrievals will result when the retrieved
candidates have significantly higher retrieval probabilities
than the other viable candidates; these Distribution-Based
mechanisms will then select the result from the mechanism
that has more distinct, or more confident, retrieved candi-
dates.

The remaining categories of mechanisms consider how
semantic associations might modify co-occurrence retrieval
mechanisms or vice versa. Each of these modifications affects
different parts of the Bayesian likelihood probability P(C|m)
introduced above. The Probability Modification category
mechanisms use co-occurrence or semantics to directly mod-
ify the retrieval probabilities of semantics or co-occurrence,
respectively. These mechanisms suggest that co-occurrence
and semantic relationships are highly intertwined, and that
the calculation of likelihood depends on both associations at
a deep level. The Context Modification mechanisms add ad-
ditional memory elements to the context for semantics or co-
occurrence, and the Candidate Modification mechanisms add
or remove memory elements from the pool of viable retrieval
candidates. This affects the context C and the retrieval can-
didates M respectively, since altering the number of memory
elements in the context or the number of elements considered
as viable retrieval candidates will affect the result of the over-
all memory retrieval. The intuition behind these mechanisms
is to use one association to either narrow the focus of, or to
fill in missing information from, the other association.

4 Task Descriptions
We evaluate these candidate co-occurrence and semantic re-
lationships with two computational tasks: Word Sense Dis-
ambiguation (WSD) and the Remote Associates Test (RAT).
Both tasks have been used for assessing long term mem-
ory retrieval, especially in computational modeling applica-
tions (Kwong, 2012; Dutta & Basu, 2012; Schatz et al.,
2022; Marko, Michalko, & Riečanskỳ, 2019). We selected
these tasks for exploring and evaluating the different inte-
grated mechanisms because it has been demonstrated that co-
occurrence retrieval mechanisms outperform semantic mech-
anisms on the WSD task (Montoyo, Suárez, Rigau, & Palo-
mar, 2005; Krovetz & Croft, 1992) and semantic mechanisms
outperform co-occurrence mechanisms on the RAT (Schatz et
al., 2022). This tradeoff enables us to explore how different
candidate integrations of semantics and co-occurrence per-
form on co-occurrence and semantics-based retrieval tasks.
Here, we review the rationale for this tradeoff and describe
how we implemented the standard CO-OCCURRENCE and SE-
MANTICS agents for each task.

4.1 Word Sense Disambiguation (WSD) Task
The WSD task asks an agent to identify the sense of a word
given other context words in the sentence. For example,
“pack” in the sentence “The pack of rats were swimming”
could mean either a group of animals or a small container;



Category Mechanism Description

Independent Joint Probability
(JPR)

The probability distributions of SEMANTICS and CO-OCCURRENCE are assumed to be mathemati-
cally independent, and the product of probabilities corresponding probability elements is taken to
produce a joint probability distribution. This suggests that co-occurrence and semantics are derived
from independent sources and contribute to the retrieval process without additional interactions.

Additive
Probability (APR)

The probability distributions of the SEMANTICS and CO-OCCURRENCE agents for each trial are
added together. This is proportional to the average of the two distributions. Similar to the previous
mechanism, this suggests that the distributions have minimal interaction before they are involved
in memory retrieval and give separate estimates of the probability that is averaged over.

Distribution
Based

Maximum
Probability
(MPR)

One of the results from the standard SEMANTICS or CO-OCCURRENCE mechanisms is used, de-
pending on which has a higher probability. Here, co-occurrence and semantics are not directly
combined, but one mechanism or the other is selected on a per-retrieval basis, based on which has
less uncertainty, as estimated by the maximal probability memory element(s).

Variance-Based
Selector (VBS)

One of the results from the standard SEMANTICS or CO-OCCURRENCE mechanisms is used, de-
pending on which distribution has higher “certainty”. We explored two definitions of certainty: as
the standard deviation of probabilities of the candidates, and as the difference between the highest
and second highest maximal probability memory element(s) in each distribution.

Probability
Modification

Semantics
Boosted
Co-occurrence
(SBC)

If two words are semantically related, their co-occurrence conditional probabilities will receive a
small boost according to some function f : [0,1] → [0,1]. We explored two such functions, the
sigmoid and square root, for the semantic “boost”. This implies that semantic associations in
memory retrieval further boost existing co-occurrence associations.

Co-occurrence
Weighted
Semantics (CWS)

The edges between memory elements in the semantic network are weighted by conditional co-
occurrence probabilities. This implies that co-occurrence associations in memory retrieval is mod-
ulate the degree to which memory elements are semantically related in the network.

Context
Modification

Semantic
Supplemented
Co-occurrence
(SSC)

Memory elements that are directly semantically related to each of the original context memory
elements are also included as context; with this expanded context, the standard co-occurrence re-
trieval mechanism is used. This suggests that semantic associations are used to supplement the
current working memory context for co-occurrence memory retrieval.

Co-occurrence
Supplemented
Semantics (CSS)

Memory elements that are co-occurrence associations to the original semantic context are also
included as context; this expanded context is activated as part of the standard semantic retrieval
mechanism. Similar to SSC, this suggests that co-occurrence associations are used to supplement
the current working memory context for semantic memory retrieval.

Candidate
Modification

Co-occurrence
Expanded
Semantics (CES)

All co-occurrence associations are incorporated into the semantic network as if they were semantic
associations themselves. This allows spreading to occur over co-occurrence associations as well,
with the implication that co-occurrence associations help define the semantic network structure.

Co-occurrence
Filtered Seman-
tics (CFS)

Associations between memory elements in the semantic network that do not also have a co-
occurrence association are removed, before the standard semantic mechanism is used. This sug-
gests that stored co-occurrence associations filter the semantic network so that only the most rele-
vant semantic associations remain.

Semantic Filtered
Co-occurrence
(SFC)

Co-occurrence associations that are not also semantically associated are removed, before the stan-
dard co-occurrence mechanism is used. This implies that co-occurrence associations between two
memory elements are only maintained if the semantic activation probability between the elements
is above a predefined threshold.

Table 1: Integrated Mechanisms and Agents

deciphering its meaning is crucial to understanding what the
speaker or writer means. Past literature has shown that the
WSD task relies heavily on statistical co-occurrence informa-
tion (Montoyo et al., 2005), making it a meaningful metric for
how candidate integrated mechanisms are able to utilize co-
occurrence information in memory retrieval.

Our implementation of the WSD task uses text from the
SemCor corpus. A subset of WordNet that contain the se-
mantic relations of words in the SemCor corpus were used to
generate the semantic network (Bird, Klein, & Loper, 2009).
We further divided the corpus into six partitions of 5,000 sen-
tences to limit the spreading of activation and make our mod-
els more computationally tractable. We measure task perfor-
mance as the percentage of correct trials averaged over all
partitions. If the agent suggests that n senses are equally

likely and one of them is correct, the agent’s performance is
discounted proportionally as 1

n .

In each trial, the SEMANTICS agent activates all other
words in the sentence at the same time. Spreading activa-
tion then occurs, and the most activated element is used as
the answer. The decay parameter and the spreading activa-
tion depth were kept constant. The SEMANTICS WSD agent
is additionally parameterized by whether how far activation
spreads, and by whether the network activations are cleared
after every trial, cleared after all trials in a sentence, or never
cleared; otherwise, the repeated activation of the words in
each sentence accumulates.

Meanwhile, the CO-OCCURRENCE agent answers using
word with the maximum posterior probability, with a naive
Bayes assumption for all context words. The probabilities



are learned from the SemCor corpus itself, but we parameter-
ize the agent by either considering the correct senses of the
context words, or only the context words themselves. For ex-
ample, in the sentence, “The pack of rats were swimming”,
the conditional probability for the retrieved sense of “pack”
could be based on co-occurrence with the correct sense of
“rats”, or merely the co-occurrence with the word “rats” re-
gardless of its sense.

4.2 Remote Associates Test (RAT)
In RAT, an agent is provided with three context words and
asked to find a word that relates to all three. For exam-
ple, if given the words “animal”, “back”, and “rat”, the cor-
rect response would be “pack” to form the compound words
“pack animal”, “backpack”, and “pack rat” (Bowden & Jung-
Beeman, 2003). RAT is often used as a test of creativity
and mental acuity in experimental psychology, with relatively
poor human performance due to the limited context given in
the task (Wu, Huang, Chen, & Chen, 2020). As such, it is
also a good test of whether candidate integrated mechanisms
are able to utilize relational, semantic associations, although
many of the solutions to RAT problems also rely on com-
monly co-occurring words.

Our implementation of the RAT uses the 142 question bank
from Bowden and Jung-Beeman (2003), which is frequently
used in both experimental and computational studies. Given
the three context words for each trial, each agent only guesses
once, selecting the candidate target with the maximum prob-
ability or activation as its guess (Schatz et al., 2022). RAT
is a difficult task in general, with performance here further
constrained by the fact that the co-occurrence and semantic
data sources do not contain solutions to every RAT problem.
Therefore, it is reasonable to expect low accuracy on the RAT
in general, regardless of the mechanism.

The SEMANTICS agent uses a semantic network generated
from the South Florida Free Association Norms (SFFAN)
corpus. Since the SFFAN corpus is a large database of human
free association norms, it may contain some co-occurrence re-
lations in addition to semantic relations (Nelson, McEvoy, &
Schreiber, 2004). While prior work have used other seman-
tic networks (Schatz et al., 2022), SFFAN contains many of
the RAT associations in a small network, and therefore is rel-
atively computationally tractable for use in experiments. In
each trial, the agent activates all context words, then uses the
word with the highest resulting activation (that is not also a
context word) as the answer. All activations in the semantic
network were cleared after each trial.

The CO-OCCURRENCE agent uses co-occurrence condi-
tional probabilities from the Google Books English One Mil-
lion dataset, which provides a relatively unbiased, represen-
tative source of co-occurrence probabilities required for the
RAT (Michel et al., 2011). We only use bigrams and not all
n-grams for computational tractability and consistency with
the smaller network sizes used in our implementation of the
WSD task. In each trial, for each candidate answer, its bi-
gram probabilities with all three context words is multiplied

together; the word with the highest joint probability is se-
lected as the trial guess. The task accuracy is computed using
the same methods employed to compute the accuracy on the
WSD.

4.3 Task Baselines
To contextualize the standard SEMANTICS and CO-
OCCURRENCE agents, as well as the integrated agents’
performance on the WSD task and RAT, we compare their
performance to two additional baselines: the ORACLE and
uniform RANDOM agents. The ORACLE is correct if either
of CO-OCCURRENCE or SEMANTICS is correct, thereby
indicating the expected maximum performance considering
only the abilities of the SEMANTICS and CO-OCCURRENCE
agents. It is possible for an integrated agent to perform
better than ORACLE if it is able to find synergy between
co-occurrence and semantic information. The ORACLE is
therefore not necessarily an upper bound on the performance
of integrated agents.

The uniform RANDOM baseline r assesses how well inte-
grated candidates perform relative to chance. For each of n
trials, r = ∑

n
i=1

1
si

. For the WSD task, si is the number of
valid word senses of each trial and for the RAT task, si is the
number of words that form bigrams with all three trial words;
This si value for the RAT task provides a better comparison
of performance than statically using the size of the SFFAN
network because many of the candidates in the network have
zero probabilities each trial and the candidates with non-zero
probabilities fluctuate between trials.

5 Experiment Results
Figure 1 provides a comparison of the relative performance
of each agent on the WSD and RAT tasks. For simplicity,
for each agent, we only show the results of the most suc-
cessful combination(s) of agent and task parameters. As ex-
pected, there is a tradeoff in the performance of the stan-
dard CO-OCCURRENCE and SEMANTICS agents, with CO-
OCCURRENCE outperforming the SEMANTICS on WSD and
vice versa on RAT, confirming our initial assumptions. These
results and the results of the integrated agents to follow are
further contextualized by the performance of the ORACLE
(WSD: 100%, RAT: 37.3%) and RANDOM baselines (WSD:
37.9%, RAT: 3.1%), representing the maximum anticipated
and chance-level performance on each task.

In general, the results of the integrated agents on either task
are not consistent with the original psychologically-based
framework for organizing the integrated mechanisms. For
each mechanism the retrieval probabilities of all viable re-
trieval candidates for each trial results in a probability distri-
bution; the average variance and ranking of the solution in
each trial distribution for a given agent are used to interpret
the results of each agent on either task. It is relevant to note
that there is a much larger number of candidates with nonzero
probabilities for the RAT compared to the WSD, which con-
tributes to the differences in distribution shape on each task
as discussed below. Additionally, mechanisms perform better



Figure 1: A performance comparison of the accuracies of the Co-
occurrence, Semantic Spreading, and integrated mechanism candi-
dates on WSD and RAT.

on WSD when the variance of the distribution of their candi-
date retrieval probabilities is higher. Higher variance implies
that distributions are more “peaked”, or that the highest prob-
ability retrieval candidates are significantly more likely to be
the retrieved than the other candidate elements. The same
trend does not hold for RAT.

We will now discuss how the results of each integrated
agent contributes to our understanding of the relationship be-
tween semantics and co-occurrence in facilitating long term
memory retrieval.

The SFC and SSC agents perform poorly on both the WSD
and RAT, indicating that integrating semantic information
into the context or candidate pool of a co-occurrence based
retrieval is ineffective for retrievals that largely rely on co-
occurrence (WSD) or semantic (RAT) information. The poor
performance of SFC can be attributed to the fact that influen-
tial co-occurrence associations that are not also semantic as-
sociations fail to be considered as retrieval candidates. Mean-
while, the SSC agent performs poorly on the WSD and RAT
likely as a result of reduced variance between candidates, or
equivalently, increased ambiguity of which candidate is cor-
rect; increasing the number of memory elements in the con-
text results in a more diffuse retrieval probability distribution,
lessening the likelihood that the ideal candidates will be re-
trieved.

The CSS, CWS, MPR, and APR agents comprise a clus-
ter of mechanisms which perform about the same as CO-
OCCURRENCE on RAT and about the same as SEMANTICS
on WSD. The success of these agents can be attributed to
factors specific to each mechanism including high retrieval
ambiguity for APR, the ineffectiveness of selecting the max-
imum probability element as a proxy for “certainty”, and in-
creased selectivity by weighting and removing semantic net-
work edges by CWS and CSS. Interestingly, though CWS per-
formed more poorly than SEMANTICS on RAT, it does in-

Figure 2: The rankings of the solution to each task trial in CO-
OCCURRENCE, SEMANTICS, and integrated agent distributions is
compared for three integrated agents: CWS, JPR, and CFS. Lines
connect the ranking of the solution in each of the CO-OCCURRENCE,
integrated, and SEMANTICS distributions for a given trial with green
lines indicating that the integrated agent correctly retrieved the solu-
tion element for the task and red lines that it did not.

crease the ranking of the correct retrieval candidate compared
to the CO-OCCURRENCE and SEMANTIC agents (shown in
Figure 2). It is possible that more complex integrations of
co-occurrence retrieval probabilities into determining edge
weights are necessary for more effective retrieval using this
strategy, but such weights were not explored here.

Another cluster of candidates including JPR, SBC, and VBS
performs nearly identically to CO-OCCURRENCE on WSD
and CO-OCCURRENCE on RAT, with JPR performing slightly
better than the other candidates on RAT. As opposed to the
other independent mechanism, APR, which suffers from high
retrieval ambiguity, JPR seems promising as a candidate re-
trieval mechanism. As demonstrated prominently in the RAT
ranking comparison plot in Figure 2, JPR generally ranks the
correct retrieval candidate higher in the distribution, as long
as the solution is both co-occurrently and semantically related
to the context, otherwise it is ranked low in the distribution.
Testing the JPR on different sources of co-occurrence and se-
mantic associations may be useful in gathering more conclu-
sive results on the efficacy of JPR, especially for semantically-
based retrievals.

Finally, the CFS and CES agents perform best out of all
integrated candidates, with performance similar to SEMAN-
TICS on WSD and similar or better than SEMANTICS on
RAT. The performance of CFS suggests that the removal of



non co-occurrence associations from the network maintains
edges that link context words to the ideal retrieval candi-
dates while removing less relevant connections from the net-
work. However, the random effects the removal of these can-
didates has on the ranking of the solution in each trial sug-
gests that critical edges are also being removed from the net-
work, as shown in Figure 2. Removing edges from the graph
based on the strength rather than the lack of existence of co-
occurrence associations as in the current CFS may prove more
effective in both co-occurrence and semantic based retrievals.
Meanwhile, the exceptional performance of CES, especially
on RAT, may be partially attributed to the inclusion of co-
occurrence relations in the free-association corpora used to
generate the semantic network. Furthermore, by nature of
the corpora used, each word has more co-occurrence asso-
ciations than semantic associations, so the effect may have
resulted from heightened spreading activation in the larger
more interconnected network that resulted. Regardless, these
results suggest that co-occurrence associations are helpful in
modifying the structure of the semantic network for both co-
occurrence and semantic based retrieval tasks. Further inves-
tigation is necessary to determine if adding and deleting edges
from the semantic network based on co-occurrence associa-
tions would be more effective than CFS and CES.

6 Discussion

The computational agents implemented in this paper, and
the underlying retrieval mechanisms they represent, ex-
plored several possible relationships between semantic and
co-occurrence mechanisms in long term memory retrieval.
Based on our results, the most successful agents across the
two tasks modify the semantic network by adding or remov-
ing edges based on co-occurrence associations. Another suc-
cessful agent uses co-occurrence associations to modulate se-
mantic retrieval by weighting semantic network edges with
co-occurrence retrieval probabilities. In all cases, the core
underlying retrieval mechanism relies on semantic networks,
but co-occurrence associations provide additional informa-
tion that modify the spreading activation process. While each
of these co-occurrence influences on semantic retrieval were
explored in independent mechanisms, it is likely that some
or all of these mechanisms are at play, with co-occurrence
associations modulating semantics at multiple stages in the
retrieval process.

In a way, these results fit in with findings from psychol-
ogy literature. Children learn co-occurrence associations at a
young age by first associating concepts that directly co-occur
in their natural environment, and only as their linguistic and
conceptual abilities mature do children learn semantic associ-
ations as memory elements with similar sets of co-occurrence
associations (Unger & Fisher, 2021; Savic, Unger, & Slout-
sky, 2023). Recent developments in word embedding models
such as word2vec further demonstrate how semantic relation-
ships could be derived from natural usage statistics (Rohde,
Gonnerman, & Plaut, 2006). In both children and such AI

models, semantic associations serve as symbolic gists of the
underlying co-occurrence statistics, but may not capture the
nuances of the full joint probabilities. While many tasks
may be solvable using semantic associations, it is possible
that additionally incorporating lower-level co-occurrence in-
formation - using it to introduce additional context or to
(de)emphasize particular semantic associations - could lead
to better retrievals. If we consider episodic memory to be a
source of co-occurrence information, this may also corrobo-
rate accounts that episodic memory facilitates retrieval from
semantic memory (Greenberg & Verfaellie, 2010).

Even though our computational results are suggestive of
trends in experimental work, it is important to note that this
remains only an early step in understanding the relationship
between co-occurrence and semantic associations in memory
retrieval. While the mechanisms suggested several ways that
semantics and co-occurrence may interact, there are many
other possible mechanisms for their interaction. We did not
explore mechanisms that integrate the associations in more
complex ways, nor how multiple mechanisms could be incor-
porated into a larger framework. Furthermore, while we con-
sidered several variable parameters for the tasks and agents
considered, there are a large number of parameters that we
did not consider or left fixed in our models. It is also likely
the case that co-occurrence associations are only independent
in certain cases, not in general as we assumed here.

One difficulty is that co-occurrence and semantic effects
have been surprisingly difficult to tease apart experimentally;
we were only able to find one paper that attempts to measure
how these associations affect retrieval separately and together
(Roelke et al., 2018). This dearth of human data makes mod-
eling difficult, hence our use of simple linguistic tasks, which
bring their own problems regarding the datasets and database
from which we draw co-occurrence and semantic informa-
tion. Beyond how these associations may not match those in
people, the distinction between semantic and co-occurrence
is also blurred in the data, as the semantic networks used in
our experiments also contain co-occurrence associations. As
mentioned above, such gray areas between different types of
associations also exist in people, which further complicates
efforts understand the distinct and combined contributions.

Nonetheless, although this work is preliminary, we be-
lieve it is a needed first step to combine the literature on co-
occurrence and semantic associations. Computational models
have not cleanly distinguished between the effects of these
mechanisms, and have even used the same representations
(such as semantic networks) to model both leading to difficul-
ties in understanding their separate and joint effects on mem-
ory retrieval. The psychology literature has been much more
careful in considering each association, and to follow suit,
we carefully considered how they might be different and how
their effects might be combined in a computational model.
Much additional work is needed, both experimentally and via
modeling, to fully understand the interplay of co-occurrence
and semantic associations in memory retrieval.
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